.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/02_text_with_string_encoders.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_02_text_with_string_encoders.py: .. _example_string_encoders: ===================================================== Various string encoders: a sentiment analysis example ===================================================== In this example, we explore the performance of string and categorical encoders available in skrub. .. |GapEncoder| replace:: :class:`~skrub.GapEncoder` .. |MinHashEncoder| replace:: :class:`~skrub.MinHashEncoder` .. |TextEncoder| replace:: :class:`~skrub.TextEncoder` .. |TableReport| replace:: :class:`~skrub.TableReport` .. |TableVectorizer| replace:: :class:`~skrub.TableVectorizer` .. |pipeline| replace:: :class:`~sklearn.pipeline.Pipeline` .. |HistGradientBoostingClassifier| replace:: :class:`~sklearn.ensemble.HistGradientBoostingClassifier` .. |RandomizedSearchCV| replace:: :class:`~sklearn.model_selection.RandomizedSearchCV` .. |GridSearchCV| replace:: :class:`~sklearn.model_selection.GridSearchCV` .. GENERATED FROM PYTHON SOURCE LINES 40-46 The Toxicity dataset -------------------- We focus on the toxicity dataset, a corpus of 1,000 tweets, evenly balanced between the binary labels "Toxic" and "Not Toxic". Our goal is to classify each entry between these two labels, using only the text of the tweets as features. .. GENERATED FROM PYTHON SOURCE LINES 46-52 .. code-block:: Python from skrub.datasets import fetch_toxicity dataset = fetch_toxicity() X, y = dataset.X, dataset.y X["is_toxic"] = y .. GENERATED FROM PYTHON SOURCE LINES 53-55 When it comes to displaying large chunks of text, the |TableReport| is especially useful! Click on any cell below to expand and read the tweet in full. .. GENERATED FROM PYTHON SOURCE LINES 55-59 .. code-block:: Python from skrub import TableReport TableReport(X) .. raw:: html

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



.. GENERATED FROM PYTHON SOURCE LINES 60-73 GapEncoder ---------- First, let's vectorize our text column using the |GapEncoder|, one of the `high cardinality categorical encoders `_ provided by skrub. As introduced in the :ref:`previous example`, the |GapEncoder| performs matrix factorization for topic modeling. It builds latent topics by capturing combinations of substrings that frequently co-occur, and encoded vectors correspond to topic activations. To interpret these latent topics, we select for each of them a few labels from the input data with the highest activations. In the example below we select 3 labels to summarize each topic. .. GENERATED FROM PYTHON SOURCE LINES 73-81 .. code-block:: Python from skrub import GapEncoder gap = GapEncoder(n_components=30) X_trans = gap.fit_transform(X["text"]) # Add the original text as a first column X_trans.insert(0, "text", X["text"]) TableReport(X_trans) .. raw:: html

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



.. GENERATED FROM PYTHON SOURCE LINES 82-84 We can use a heatmap to highlight the highest activations, making them more visible for comparison against the original text and vectors above. .. GENERATED FROM PYTHON SOURCE LINES 84-119 .. code-block:: Python import numpy as np from matplotlib import pyplot as plt def plot_gap_feature_importance(X_trans): x_samples = X_trans.pop("text") # We slightly format the topics and labels for them to fit on the plot. topic_labels = [x.replace("text: ", "") for x in X_trans.columns] labels = x_samples.str[:50].values + "..." # We clip large outliers to makes activations more visible. X_trans = np.clip(X_trans, a_min=None, a_max=200) plt.figure(figsize=(10, 10), dpi=200) plt.imshow(X_trans.T) plt.yticks( range(len(topic_labels)), labels=topic_labels, ha="right", size=12, ) plt.xticks(range(len(labels)), labels=labels, size=12, rotation=50, ha="right") plt.colorbar().set_label(label="Topic activations", size=13) plt.ylabel("Latent topics", size=14) plt.xlabel("Data entries", size=14) plt.tight_layout() plt.show() plot_gap_feature_importance(X_trans.head()) .. image-sg:: /auto_examples/images/sphx_glr_02_text_with_string_encoders_001.png :alt: 02 text with string encoders :srcset: /auto_examples/images/sphx_glr_02_text_with_string_encoders_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/circleci/project/examples/02_text_with_string_encoders.py:113: UserWarning: Glyph 4108 (\N{MYANMAR LETTER TTHA}) missing from font(s) DejaVu Sans. plt.tight_layout() .. GENERATED FROM PYTHON SOURCE LINES 120-140 Now that we have an understanding of the vectors produced by the |GapEncoder|, let's evaluate its performance in toxicity classification. The |GapEncoder| excels at handling categorical columns with high cardinality, but here the column consists of free-form text. Sentences are generally longer, with more unique ngrams than high cardinality categories. To benchmark the performance of the |GapEncoder| against the toxicity dataset, we integrate it into a |TableVectorizer|, as introduced in the :ref:`previous example`, and create a |pipeline| by appending a |HistGradientBoostingClassifier|, which consumes the vectors produced by the |GapEncoder|. We set ``n_components`` to 30; however, to achieve the best performance, we would need to find the optimal value for this hyperparameter using either |GridSearchCV| or |RandomizedSearchCV|. We skip this part to keep the computation time for this example small. Recall that the ROC AUC is a metric that quantifies the ranking power of estimators, where a random estimator scores 0.5, and an oracle —providing perfect predictions— scores 1. .. GENERATED FROM PYTHON SOURCE LINES 140-175 .. code-block:: Python from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.model_selection import cross_validate from sklearn.pipeline import make_pipeline from skrub import TableVectorizer def plot_box_results(named_results): fig, ax = plt.subplots() names, scores = zip( *[(name, result["test_score"]) for name, result in named_results] ) ax.boxplot(scores) ax.set_xticks(range(1, len(names) + 1), labels=list(names), size=12) ax.set_ylabel("ROC AUC", size=14) plt.title( "AUC distribution across folds (higher is better)", size=14, ) plt.show() results = [] y = X.pop("is_toxic").map({"Toxic": 1, "Not Toxic": 0}) gap_pipe = make_pipeline( TableVectorizer(high_cardinality=GapEncoder(n_components=30)), HistGradientBoostingClassifier(), ) gap_results = cross_validate(gap_pipe, X, y, scoring="roc_auc") results.append(("GapEncoder", gap_results)) plot_box_results(results) .. image-sg:: /auto_examples/images/sphx_glr_02_text_with_string_encoders_002.png :alt: AUC distribution across folds (higher is better) :srcset: /auto_examples/images/sphx_glr_02_text_with_string_encoders_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 176-183 MinHashEncoder -------------- We now compare these results with the |MinHashEncoder|, which is faster and produces vectors better suited for tree-based estimators like |HistGradientBoostingClassifier|. To do this, we can simply replace the |GapEncoder| with the |MinHashEncoder| in the previous pipeline using ``set_params()``. .. GENERATED FROM PYTHON SOURCE LINES 183-195 .. code-block:: Python from sklearn.base import clone from skrub import MinHashEncoder minhash_pipe = clone(gap_pipe).set_params( **{"tablevectorizer__high_cardinality": MinHashEncoder(n_components=30)} ) minhash_results = cross_validate(minhash_pipe, X, y, scoring="roc_auc") results.append(("MinHashEncoder", minhash_results)) plot_box_results(results) .. image-sg:: /auto_examples/images/sphx_glr_02_text_with_string_encoders_003.png :alt: AUC distribution across folds (higher is better) :srcset: /auto_examples/images/sphx_glr_02_text_with_string_encoders_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 196-210 Remarkably, the vectors produced by the |MinHashEncoder| offer less predictive power than those from the |GapEncoder| on this dataset. TextEncoder ----------- Let's now shift our focus to pre-trained deep learning encoders. Our previous encoders are syntactic models that we trained directly on the toxicity dataset. To generate more powerful vector representations for free-form text and diverse entries, we can instead use semantic models, such as BERT, which have been trained on very large datasets. |TextEncoder| enables you to integrate any Sentence Transformer model from the Hugging Face Hub (or from your local disk) into your |pipeline| to transform a text column in a dataframe. By default, |TextEncoder| uses the e5-small-v2 model. .. GENERATED FROM PYTHON SOURCE LINES 210-224 .. code-block:: Python from skrub import TextEncoder text_encoder = TextEncoder( "sentence-transformers/paraphrase-albert-small-v2", device="cpu", ) text_encoder_pipe = clone(gap_pipe).set_params( **{"tablevectorizer__high_cardinality": text_encoder} ) text_encoder_results = cross_validate(text_encoder_pipe, X, y, scoring="roc_auc") results.append(("TextEncoder", text_encoder_results)) plot_box_results(results) .. image-sg:: /auto_examples/images/sphx_glr_02_text_with_string_encoders_004.png :alt: AUC distribution across folds (higher is better) :srcset: /auto_examples/images/sphx_glr_02_text_with_string_encoders_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 225-231 The performance of the |TextEncoder| is significantly stronger than that of the syntactic encoders, which is expected. But how long does it take to load and vectorize text on a CPU using a Sentence Transformer model? Below, we display the tradeoff between predictive accuracy and training time. Note that since we are not training the Sentence Transformer model, the "fitting time" refers to the time taken for vectorization. .. GENERATED FROM PYTHON SOURCE LINES 231-287 .. code-block:: Python def plot_performance_tradeoff(results): fig, ax = plt.subplots(figsize=(5, 4), dpi=200) markers = ["s", "o", "^"] for idx, (name, result) in enumerate(results): ax.scatter( result["fit_time"], result["test_score"], label=name, marker=markers[idx], ) mean_fit_time = np.mean(result["fit_time"]) mean_score = np.mean(result["test_score"]) ax.scatter( mean_fit_time, mean_score, color="k", marker=markers[idx], ) std_fit_time = np.std(result["fit_time"]) std_score = np.std(result["test_score"]) ax.errorbar( x=mean_fit_time, y=mean_score, yerr=std_score, fmt="none", c="k", capsize=2, ) ax.errorbar( x=mean_fit_time, y=mean_score, xerr=std_fit_time, fmt="none", c="k", capsize=2, ) ax.set_xlabel("Time to fit (seconds)") ax.set_ylabel("ROC AUC") ax.set_title("Prediction performance / training time trade-off") ax.annotate( "", xy=(1.5, 0.98), xytext=(8.5, 0.90), arrowprops=dict(arrowstyle="->", mutation_scale=15), ) ax.text(8, 0.86, "Best time / \nperformance trade-off") ax.legend(bbox_to_anchor=(1, 0.3)) plt.show() plot_performance_tradeoff(results) .. image-sg:: /auto_examples/images/sphx_glr_02_text_with_string_encoders_005.png :alt: Prediction performance / training time trade-off :srcset: /auto_examples/images/sphx_glr_02_text_with_string_encoders_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 288-301 The black points represent the average time to fit and AUC for each vectorizer, and the width of the bars represents one standard deviation The green outlier dot on the right side of the plot corresponds to the first time the Sentence Transformers model was downloaded and loaded into memory. During the subsequent cross-validation iterations, the model is simply copied, which reduces computation time for the remaining folds. Conclusion ---------- In conclusion, |TextEncoder| provides powerful vectorization for text, but at the cost of longer computation times and the need for additional dependencies, such as torch. .. rst-class:: sphx-glr-timing **Total running time of the script:** (3 minutes 51.226 seconds) .. _sphx_glr_download_auto_examples_02_text_with_string_encoders.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/skrub-data/skrub/main?urlpath=lab/tree/notebooks/auto_examples/02_text_with_string_encoders.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../lite/lab/index.html?path=auto_examples/02_text_with_string_encoders.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 02_text_with_string_encoders.ipynb <02_text_with_string_encoders.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 02_text_with_string_encoders.py <02_text_with_string_encoders.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 02_text_with_string_encoders.zip <02_text_with_string_encoders.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_