{ "cells": [ { "cell_type": "raw", "id": "ebb2d9b6", "metadata": { "vscode": { "languageId": "raw" } }, "source": [ "---\n", "title: Introduction to Skrub\n", "author: Jérôme Dockès\n", "date: 2025/01/29\n", "format:\n", " html:\n", " code-fold: false\n", "jupyter:\n", " jupytext:\n", " cell_metadata_filter: '-all'\n", " main_language: python\n", " notebook_metadata_filter: '-all'\n", " kernelspec:\n", " display_name: Python 3 (ipykernel)\n", " language: python\n", " name: python3\n", " path: /home/jerome/miniforge3/envs/skb/share/jupyter/kernels/python3\n", "---" ] }, { "cell_type": "markdown", "id": "007a412b", "metadata": {}, "source": [ "\n", "\n", "**Machine Learning for Dataframes**\n", "[skrub-data.org](https://skrub-data.org/)\n", "\n", "# Machine learning and tabular data\n", "\n", "- ML expects numeric arrays\n", "- Real data is more complex:\n", " - Multiple tables\n", " - Dates, categories, text, locations, …\n", "\n", "**Skrub: bridge the gap between dataframes and scikit-learn.**\n", "\n", "## Skrub helps at several stages of a tabular learning project\n", "\n", "1. What's in the data? (EDA)\n", "1. Can we learn anything? (baselines)\n", "1. How do I represent the data? (feature extraction)\n", "1. How do I bring it all together? (building a pipeline)\n", "\n", "# 1. What's in the data?" ] }, { "cell_type": "code", "execution_count": 1, "id": "21ec6ff5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "gender F\n", "department POL\n", "department_name Department of Police\n", "division MSB Information Mgmt and Tech Division Records...\n", "assignment_category Fulltime-Regular\n", "employee_position_title Office Services Coordinator\n", "date_first_hired 09/22/1986\n", "year_first_hired 1986\n", "Name: 0, dtype: object" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import skrub\n", "import pandas as pd\n", "\n", "employee_salaries = pd.read_csv(\"https://figshare.com/ndownloader/files/51755822\")\n", "employees = employee_salaries.drop(\"current_annual_salary\", axis=1)\n", "salaries = employee_salaries[\"current_annual_salary\"]\n", "employees.iloc[0]" ] }, { "cell_type": "markdown", "id": "dfeb4dac", "metadata": {}, "source": [ "\n", "## `TableReport`: interactive display of a dataframe" ] }, { "cell_type": "code", "execution_count": 2, "id": "24ff8426", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "skrub.TableReport(employees, verbose=0)" ] }, { "cell_type": "markdown", "id": "0e5d1160", "metadata": {}, "source": [ "We can tell skrub to patch the default display of polars and pandas dataframes." ] }, { "cell_type": "code", "execution_count": 3, "id": "a478a059", "metadata": {}, "outputs": [], "source": [ "skrub.patch_display(verbose=0)" ] }, { "cell_type": "markdown", "id": "dd57a74a", "metadata": {}, "source": [ "# 2. Can we learn anything?" ] }, { "cell_type": "code", "execution_count": 4, "id": "d6aaaf66", "metadata": {}, "outputs": [], "source": [ "X, y = employees, salaries" ] }, { "cell_type": "markdown", "id": "51662e4a", "metadata": {}, "source": [ "## `tabular_learner`: a pre-made robust baseline" ] }, { "cell_type": "code", "execution_count": 5, "id": "77a817f8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(steps=[('tablevectorizer',\n",
       "                 TableVectorizer(high_cardinality=MinHashEncoder(),\n",
       "                                 low_cardinality=ToCategorical())),\n",
       "                ('histgradientboostingregressor',\n",
       "                 HistGradientBoostingRegressor(categorical_features='from_dtype'))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "Pipeline(steps=[('tablevectorizer',\n", " TableVectorizer(high_cardinality=MinHashEncoder(),\n", " low_cardinality=ToCategorical())),\n", " ('histgradientboostingregressor',\n", " HistGradientBoostingRegressor(categorical_features='from_dtype'))])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "learner = skrub.tabular_learner(\"regressor\")\n", "learner" ] }, { "cell_type": "code", "execution_count": 6, "id": "d12f4ac3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.89370447, 0.89279068, 0.92282557, 0.92319094, 0.92162666])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.model_selection import cross_val_score\n", "\n", "cross_val_score(learner, X, y, scoring=\"r2\")" ] }, { "cell_type": "markdown", "id": "cc7c9452", "metadata": {}, "source": [ "The `tabular_learner` adapts to the supervised estimator we choose" ] }, { "cell_type": "code", "execution_count": 7, "id": "f29eb5e1", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Pipeline(steps=[('tablevectorizer', TableVectorizer()),\n",
       "                ('simpleimputer', SimpleImputer(add_indicator=True)),\n",
       "                ('standardscaler', StandardScaler()), ('ridge', Ridge())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "Pipeline(steps=[('tablevectorizer', TableVectorizer()),\n", " ('simpleimputer', SimpleImputer(add_indicator=True)),\n", " ('standardscaler', StandardScaler()), ('ridge', Ridge())])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import Ridge\n", "\n", "learner = skrub.tabular_learner(Ridge())\n", "learner" ] }, { "cell_type": "code", "execution_count": 8, "id": "90dfa79d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0.7332394 , 0.71975525, 0.75090551, 0.74173251, 0.73988883])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cross_val_score(learner, X, y, scoring=\"r2\")" ] }, { "cell_type": "markdown", "id": "c03e30ca", "metadata": {}, "source": [ "# 3. How do I represent the data?\n", "\n", "Skrub helps extract informative features from tabular data.\n", "\n", "## `TableVectorizer`: apply an appropriate transformer to each column" ] }, { "cell_type": "code", "execution_count": 9, "id": "f7878a30", "metadata": {}, "outputs": [], "source": [ "vectorizer = skrub.TableVectorizer()\n", "transformed = vectorizer.fit_transform(X)" ] }, { "cell_type": "markdown", "id": "ad6937a2", "metadata": {}, "source": [ "The `TableVectorizer` identifies several kinds of columns:\n", "\n", "- categorical, low cardinality\n", "- categorical, high cardinality\n", "- datetime\n", "- numeric\n", "- ... we may add more" ] }, { "cell_type": "code", "execution_count": 10, "id": "c7ee44b0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'assignment_category': 'low_cardinality',\n", " 'date_first_hired': 'datetime',\n", " 'department': 'low_cardinality',\n", " 'department_name': 'low_cardinality',\n", " 'division': 'high_cardinality',\n", " 'employee_position_title': 'high_cardinality',\n", " 'gender': 'low_cardinality',\n", " 'year_first_hired': 'numeric'}\n" ] } ], "source": [ "from pprint import pprint\n", "\n", "pprint(vectorizer.column_to_kind_)" ] }, { "cell_type": "markdown", "id": "3cab156b", "metadata": {}, "source": [ "For each kind, it applies an appropriate transformer" ] }, { "cell_type": "code", "execution_count": 11, "id": "6a35d3d6", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
OneHotEncoder(drop='if_binary', dtype='float32', handle_unknown='ignore',\n",
       "              sparse_output=False)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "OneHotEncoder(drop='if_binary', dtype='float32', handle_unknown='ignore',\n", " sparse_output=False)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vectorizer.transformers_[\"department\"] # low-cardinality categorical" ] }, { "cell_type": "code", "execution_count": 12, "id": "e0795dcb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
GapEncoder(n_components=30)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "GapEncoder(n_components=30)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vectorizer.transformers_[\"employee_position_title\"] # high-cardinality categorical" ] }, { "cell_type": "code", "execution_count": 13, "id": "7ee0456e", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
DatetimeEncoder()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ], "text/plain": [ "DatetimeEncoder()" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vectorizer.transformers_[\"date_first_hired\"] # datetime" ] }, { "cell_type": "markdown", "id": "80872e42", "metadata": {}, "source": [ "... and those transformers turn the input into numeric features that can be used for ML" ] }, { "cell_type": "code", "execution_count": 14, "id": "bfe303aa", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ " date_first_hired_year date_first_hired_month date_first_hired_day \\\n", "0 1986.0 9.0 22.0 \n", "1 1988.0 9.0 12.0 \n", "2 1989.0 11.0 19.0 \n", "3 2014.0 5.0 5.0 \n", "4 2007.0 3.0 5.0 \n", "... ... ... ... \n", "9223 2015.0 11.0 3.0 \n", "9224 1988.0 11.0 28.0 \n", "9225 2001.0 4.0 30.0 \n", "9226 2006.0 9.0 5.0 \n", "9227 2012.0 1.0 30.0 \n", "\n", " date_first_hired_total_seconds \n", "0 5.277312e+08 \n", "1 5.900256e+08 \n", "2 6.274368e+08 \n", "3 1.399248e+09 \n", "4 1.173053e+09 \n", "... ... \n", "9223 1.446509e+09 \n", "9224 5.966784e+08 \n", "9225 9.885888e+08 \n", "9226 1.157414e+09 \n", "9227 1.327882e+09 \n", "\n", "[9228 rows x 4 columns]" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transformed[vectorizer.input_to_outputs_[\"date_first_hired\"]]" ] }, { "cell_type": "markdown", "id": "ddc90b66", "metadata": {}, "source": [ "For high-cardinality categorical columns the default `GapEncoder` identifies\n", "sparse topics (more later)." ] }, { "cell_type": "code", "execution_count": 15, "id": "a2e90855", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ " employee_position_title: enforcement, inspector, permitting \\\n", "0 0.055837 \n", "1 0.051760 \n", "2 0.054560 \n", "3 0.122601 \n", "4 0.078496 \n", "... ... \n", "9223 0.053117 \n", "9224 0.050660 \n", "9225 2.982951 \n", "9226 0.053742 \n", "9227 14.322513 \n", "\n", " employee_position_title: librarian, candidate, telephone \\\n", "0 0.051225 \n", "1 0.057219 \n", "2 0.053533 \n", "3 3.613154 \n", "4 0.055084 \n", "... ... \n", "9223 0.051759 \n", "9224 0.067475 \n", "9225 33.539654 \n", "9226 0.051238 \n", "9227 0.054949 \n", "\n", " employee_position_title: income, assistance, client \\\n", "0 0.054423 \n", "1 0.080916 \n", "2 0.055027 \n", "3 0.059783 \n", "4 0.081737 \n", "... ... \n", "9223 0.053704 \n", "9224 0.104542 \n", "9225 0.118037 \n", "9226 0.051390 \n", "9227 0.088453 \n", "\n", " employee_position_title: officer, office, police \\\n", "0 0.104617 \n", "1 21.938334 \n", "2 0.060591 \n", "3 0.081950 \n", "4 0.072136 \n", "... ... \n", "9223 0.054372 \n", "9224 0.051843 \n", "9225 0.163331 \n", "9226 0.060671 \n", "9227 0.254046 \n", "\n", " employee_position_title: firefighter, rescuer, fire \\\n", "0 0.054770 \n", "1 0.062628 \n", "2 0.059119 \n", "3 1.613640 \n", "4 0.065077 \n", "... ... \n", "9223 0.052683 \n", "9224 0.080362 \n", "9225 0.059859 \n", "9226 0.059728 \n", "9227 0.052817 \n", "\n", " employee_position_title: manager, engineer, iii \\\n", "0 0.053633 \n", "1 0.073677 \n", "2 0.075124 \n", "3 0.569656 \n", "4 1.717998 \n", "... ... \n", "9223 0.059572 \n", "9224 0.050011 \n", "9225 0.084632 \n", "9226 11.890956 \n", "9227 0.060229 \n", "\n", " employee_position_title: operator, bus, operations \\\n", "0 0.070253 \n", "1 0.054501 \n", "2 0.053707 \n", "3 0.073116 \n", "4 0.051723 \n", "... ... \n", "9223 0.050000 \n", "9224 0.050003 \n", "9225 0.113300 \n", "9226 0.051838 \n", "9227 0.062696 \n", "\n", " employee_position_title: administrative, administration, administrator \\\n", "0 0.054210 \n", "1 0.061990 \n", "2 0.064614 \n", "3 0.060432 \n", "4 0.170369 \n", "... ... \n", "9223 0.053928 \n", "9224 0.298092 \n", "9225 2.064655 \n", "9226 0.051340 \n", "9227 0.118412 \n", "\n", " employee_position_title: coordinator, services, service \\\n", "0 37.334484 \n", "1 0.064149 \n", "2 0.052171 \n", "3 0.143926 \n", "4 0.052437 \n", "... ... \n", "9223 0.051954 \n", "9224 0.427113 \n", "9225 0.118098 \n", "9226 0.051677 \n", "9227 0.071181 \n", "\n", " employee_position_title: specialist, special, quality ... \\\n", "0 0.050861 ... \n", "1 0.058941 ... \n", "2 0.073534 ... \n", "3 0.065745 ... \n", "4 13.797388 ... \n", "... ... ... \n", "9223 0.054271 ... \n", "9224 0.063735 ... \n", "9225 0.149983 ... \n", "9226 0.051898 ... \n", "9227 2.074545 ... \n", "\n", " employee_position_title: sergeant, cadet, emergency \\\n", "0 0.073467 \n", "1 0.075320 \n", "2 0.051772 \n", "3 0.120554 \n", "4 0.057342 \n", "... ... \n", "9223 0.054166 \n", "9224 0.081565 \n", "9225 0.067538 \n", "9226 0.055003 \n", "9227 0.144251 \n", "\n", " employee_position_title: captain, chief, mcfrs \\\n", "0 0.056256 \n", "1 0.051855 \n", "2 0.050209 \n", "3 0.155208 \n", "4 0.052376 \n", "... ... \n", "9223 0.051207 \n", "9224 32.413342 \n", "9225 0.103674 \n", "9226 0.050003 \n", "9227 0.052378 \n", "\n", " employee_position_title: technician, mechanic, supply \\\n", "0 0.051372 \n", "1 0.054940 \n", "2 0.056745 \n", "3 0.055341 \n", "4 0.074695 \n", "... ... \n", "9223 0.053234 \n", "9224 0.062815 \n", "9225 0.746057 \n", "9226 0.053556 \n", "9227 0.058841 \n", "\n", " employee_position_title: supervisory, therapist, supervisor \\\n", "0 0.054491 \n", "1 0.055375 \n", "2 0.053619 \n", "3 18.319544 \n", "4 0.066782 \n", "... ... \n", "9223 0.055667 \n", "9224 0.941181 \n", "9225 0.071548 \n", "9226 0.053275 \n", "9227 0.060020 \n", "\n", " employee_position_title: equipment, investigator, investment \\\n", "0 0.057263 \n", "1 0.052625 \n", "2 0.055573 \n", "3 5.224661 \n", "4 0.053372 \n", "... ... \n", "9223 0.050661 \n", "9224 0.050294 \n", "9225 2.250736 \n", "9226 0.053125 \n", "9227 0.070081 \n", "\n", " employee_position_title: legislative, principal, executive \\\n", "0 0.052990 \n", "1 0.055046 \n", "2 0.056466 \n", "3 0.062999 \n", "4 0.057368 \n", "... ... \n", "9223 0.052250 \n", "9224 0.391332 \n", "9225 0.160525 \n", "9226 0.050008 \n", "9227 0.053466 \n", "\n", " employee_position_title: recruit, master, registered \\\n", "0 0.054203 \n", "1 6.389757 \n", "2 0.054962 \n", "3 0.118925 \n", "4 0.051164 \n", "... ... \n", "9223 0.050344 \n", "9224 0.070425 \n", "9225 0.059213 \n", "9226 0.055203 \n", "9227 0.050916 \n", "\n", " employee_position_title: crossing, purchasing, background \\\n", "0 0.053270 \n", "1 0.051653 \n", "2 0.050196 \n", "3 0.057643 \n", "4 0.117116 \n", "... ... \n", "9223 0.050235 \n", "9224 0.158476 \n", "9225 0.052479 \n", "9226 0.050057 \n", "9227 3.101249 \n", "\n", " employee_position_title: planning, senior, resources \\\n", "0 0.060353 \n", "1 0.068581 \n", "2 0.059537 \n", "3 0.110435 \n", "4 15.624563 \n", "... ... \n", "9223 0.052620 \n", "9224 0.086660 \n", "9225 0.103876 \n", "9226 0.051654 \n", "9227 0.076335 \n", "\n", " employee_position_title: warehouse, welfare, caseworker \n", "0 0.053065 \n", "1 0.053899 \n", "2 20.848505 \n", "3 0.083067 \n", "4 0.061086 \n", "... ... \n", "9223 0.054256 \n", "9224 0.083612 \n", "9225 2.363046 \n", "9226 0.057863 \n", "9227 0.067776 \n", "\n", "[9228 rows x 30 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "transformed[vectorizer.input_to_outputs_[\"employee_position_title\"]]" ] }, { "cell_type": "markdown", "id": "0777a243", "metadata": {}, "source": [ "The transformer used for each column kind can be easily configured." ] }, { "cell_type": "markdown", "id": "d433bae0", "metadata": {}, "source": [ "## Preprocessing in the `TableVectorizer`\n", "\n", "The `TableVectorizer` actually performs a lot of preprocessing before\n", "applying the final transformers, such as:\n", "\n", "- ensuring consistent column names\n", "- detecting missing values such as `\"N/A\"`\n", "- dropping empty columns\n", "- handling pandas dtypes -- `float64`, `nan` vs `Float64`, `NA`\n", "- parsing numbers\n", "- parsing dates, ensuring consistent dtype and timezone\n", "- converting numbers to float32 for faster computation & less memory downstream\n", "- ..." ] }, { "cell_type": "code", "execution_count": 16, "id": "c0c5bbb7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[CleanNullStrings(),\n", " DropIfTooManyNulls(),\n", " ToDatetime(),\n", " DatetimeEncoder(),\n", " {'date_first_hired_day': ToFloat32(), 'date_first_hired_month': ToFloat32(), ...}]\n" ] } ], "source": [ "pprint(vectorizer.all_processing_steps_[\"date_first_hired\"])" ] }, { "cell_type": "markdown", "id": "33a01617", "metadata": {}, "source": [ "## Extracting good features\n", "\n", "Skrub offers several encoders to extract features from different columns.\n", "In particular from categorical columns.\n", "\n", "### `GapEncoder`\n", "\n", "Categories are somewhere between text and an enumeration...\n", "The `GapEncoder` is somewhere between a topic model and a one-hot encoder!" ] }, { "cell_type": "code", "execution_count": 17, "id": "b8438de7", "metadata": { "lines_to_next_cell": 2 }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABXUAAAS4CAYAAABYaiuHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAB2HAAAdhwGP5fFlAAEAAElEQVR4nOzdeXSM9/v/8ddkTyRIEGs1dqX1qSW11BK0qNjXbhRtdaFoaeuj7ZeqVtGNarWl1lK7UrVV1b6LtghRIoglslhiSUgyvz/8Zj6JrENicmeej3PmnDtzv9/vue57Jo5z5ZrrbTKbzWYBAAAAAAAAAAzByd4BAAAAAAAAAAByjqQuAAAAAAAAABgISV0AAAAAAAAAMBCSugAAAAAAAABgICR1AQAAAAAAAMBASOoCAAAAAAAAgIGQ1AUAAAAAAAAAAyGpCwAAAAAAAAAGQlIXAAAAAAAAAAyEpC4AAAAAAAAAGAhJXQAAAAAAAAAwEJK6AAAAAAAAAGAgJHUBAAAAAAAAwEBI6gIAAAAAAACAgZDUBQAAAAAAAAADIakLAAAAAAAAAAZCUhcAAAAAAAAADISkLgAAAAAAAAAYiIu9AwAAGJ+LW1l7h1BgTCjV3N4hFChvn//T3iEAyGPxS4faO4QCw6fL5/YOAQAMI+nmGXuHkKtuxYTbO4R0XItXtHcI+RqVugAAAAAAAABgICR1AQAAAAAAAMBAaL8AAAAAAAAAOLKUZHtHABtRqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgCMzp9g7AtiISl0AAAAAAAAAMBCSugAAAAAAAABgILRfAAAAAAAAABxZCu0XjIZKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHJjZTPsFo6FSFwAAAAAAAAAMhEpdAAAAAAAAwJGxUZrhUKkLAAAAAAAAoMCLjIzUlClT9OKLLyowMFDly5eXp6envLy8VKlSJT3zzDNavXp1jtdbu3atOnbsqDJlysjDw0Ply5fXc889p127duXhVdxGpS4AAAAAAACAAm/lypV6/fXXMzwXHh6u8PBwzZ8/Xx06dNDPP/8sLy+vTNcaPHiwJk2alOa506dPa968eVqwYIE+/fRTDRs2LFfjT41KXQAAAAAAAMCRmVPy3yMPeHh4qHXr1ho/frx+//13HTp0SDExMTp69KiWLl2qJk2aSJJWrFihl156KdN1vvjiC2tCNzg4WLt371Z0dLQ2btyoBg0aKDk5WW+//baWLl2aJ9chSSaz2WzOs9UBAA7Bxa2svUMoMCaUam7vEAqUt8//ae8QAOSx+KVD7R1CgeHT5XN7hwAAhpF084y9Q8hVN0//be8Q0nF74D/3/TXNZrPatWunVatWSZJOnDihgICANGNiYmJUsWJFxcfHq3nz5lq/fr2cnP5XN3vjxg3Vrl1bYWFhCggIUFhYmNzc3HI9Vip1AQAAAAAAADg8k8mkF1980frzvn370o2ZPXu24uPjJUnjxo1Lk9CVJE9PT40ePVqSFBERYU0Q5zaSugAAAAAAAIAjS0nOfw87cXV1tR57eHikO79ixQpJUoUKFRQYGJjhGh07drTOXb58eR5ESVIXAAAAAAAAACRJ8+fPl3Q7uVu7du1050NCQiRJDRs2zHQNd3d369yMqn1zA0ldAAAAAAAAAA4rOjpaW7ZsUffu3TVv3jxJ0pAhQ1SmTJk0486cOWNtvVCxYsUs17ScP3r0qPJiSzOXXF8RAAAAAAAAgHGYU+wdQToXL17Mdoyvr+9dr9+nTx/NmjUr3fNFixbV22+/rf/+97/pzsXExFiPS5YsmeX6/v7+kqTExERdvXpVPj4+dx1rRkjqAgAAAAAAAMhX/Pz8sh2T2xWwTk5O6tevn3r27CmTyZTu/LVr16zHGfXbTc3T09N6nBdJXdovAAAAAAAAAHAo33//veLj43XlyhWdPn1ay5cvV4sWLfTFF1+oVq1aWrhwYbo5qZPIGSV97ycqdQEAAAAAAABHlpL/2i/ExcXl6fru7u5yd3eXJPn4+KhcuXLq0KGDXnvtNX333Xd69tlnVbFiRdWrV886x9vb23p848aNLNdPfT71vNxCpS4AAAAAAACAfMXX1zfbR16YMGGCvLy8lJycrIkTJ6Y5V7x4cetxVFRUlutcuHBB0u3kMUldAAAAAAAAAMgj3t7eqlmzpiRp//79ac6VLVvW2hs3PDw8y3VOnDghSapatWqetGogqQsAAAAAAAA4MLM5Jd897CkpKSnTc3Xq1JEk7dy5M9MxiYmJCgkJkSTVrVs3d4P7/0jqAgAAAAAAAICk2NhYHTx4UJJUqVKldOc7dOgg6Xal7t69ezNcY8WKFUpISJAkdezYMU/iJKkLAAAAAAAAoMA7fPhwlueTk5M1YMAA3bp1S5LUvXv3dGN69+5tbcEwfPhwpdyxyVxCQoJGjhwpSQoICFDbtm1zI/R0SOoCAAAAAAAAjiwlJf898sDDDz+s9u3ba/r06fr777914cIFXbp0SUePHtWsWbNUv359LViwQJLUrFkzPfvss+nWKF68uEaNGiVJ+uOPP9SxY0ft3btXMTEx2rx5s1q0aGFNHn/++edyc3PLk2txyZNVAQAAAAAAACAfSUlJ0cqVK7Vy5cosx3Xr1k0zZsyQk1PG9bBvvfWWIiIi9PXXX2e4npOTk8aNG6cuXbrkWux3IqkLAAAAAAAAoMDbsmWL/vzzT23ZskURERG6cOGCrl27psKFC6tChQpq0KCBnn/+eTVo0CDbtSZNmqTg4GB9++232r17t+Li4uTv768mTZpo8ODBql+/fp5eC0ldAAAAAAAAwJGZ86bdQX7TuHFjNW7cONfWa926tVq3bp1r69mCnroAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADiylGR7RwAbUakLAAAAAAAAAAZCpS4AAAAAAADgyBxko7SChEpdAAAAAAAAADAQkroAAAAAAAAAYCC0XwAAAAAAAAAcWQrtF4yGSl0AAAAAAAAAMBCSugAAAAAAAABgILRfAAAAAAAAAByZmfYLRkOlLgAAAAAAAAAYCEldAAAAAAAAADAQ2i8AAAAAAAAAjiyF9gtGQ6UuAAAAAAAAABgISV0AAAAAAAAAMBDaLwAAAAAAAAAOzGxOtncIsBGVugAAAAAAAABgICR1AQAAAAAAAMBAaL8AAAAAAAAAODJzir0jgI2o1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwJGl0H7BaKjUBQAAAAAAAAADIakLAAAAAAAAAAZyX5K6YWFhev/99/XYY4+pVKlScnNzU8mSJRUYGKj33ntPR44cyfFav/zyi1q1aqUSJUrIxcVFJpNJRYsWTTMmOjpab775pqpXry4vLy+ZTCaZTCZ99dVXkqRRo0bJZDIpICAg9y7yPjt+/LjeffddPfbYY/L19ZWrq6tKliypWrVqqUOHDpowYYJ27dql5ORke4d6TwrCe3Wvrly5oilTpqhz586qWLGiChcuLHd3d5UqVUrNmzfXBx98oMOHD9s7zPsmICBAJpNJo0aNSneuT58+MplMCgoKuu9xAQAAAABgWOaU/PdAlvK0p+7Nmzc1dOhQfffdd0pKSkpz7sKFC7pw4YL27t2rcePG6dVXX9UXX3whNze3TNf7/vvv9eqrr2b5mteuXVPDhg11/PjxXLmG/GjSpEl6++23dfPmzTTPW+7pgQMH9Ouvv0qS9uzZo3r16tkjTOSCKVOm6IMPPlBsbGy6c1FRUYqKitLGjRs1ZswYdezYUd9++63KlCljh0iRExEREapQoYIk6c8//yT5DAAAAAAA7kqeVepeu3ZNbdq00eTJk5WUlKSaNWvq+++/15EjRxQbG6uwsDBNnTpVjzzyiJKTk/XNN9+oTZs2un79eqZrjh49WpL0+OOPKyQkRBcvXlR8fLzOnDljHTNv3jwdP35cJpNJ3333nSIjIxUfH6/4+HgNGDAgry73vpk3b54GDx6smzdv6oEHHtBnn32mffv2KSoqSufOndP27dv12WefqXHjxvYOFffAbDbr1Vdf1euvv67Y2Fj5+vpqxIgR2rx5s06fPq2YmBiFhoZq5syZat++vSRp+fLl2r17t50jBwAAAAAAQF4zmc1mc14s3K9fP82YMcN6/N1338nV1TXduFu3bum1117Tjz/+KEl68cUXNW3atHTjoqOj5e/vL0latmyZOnXqlOHrDhgwQN9++63+85//6K+//sqdi8lHAgICdPLkSQUEBCgkJES+vr6Zjj106JBKlChhvW8wjvHjx+vdd9+VJLVo0UKLFy/O8r3et2+f+vTpo48++ijT342CwvI7MHLkyAxbMORnBblS18WtrL1DKDAmlGpu7xAKlLfP/2nvEADksfilQ+0dQoHh0+Vze4cAAIaRdPNM9oMMJGHPEnuHkI5HYFd7h5Cv5Uml7saNG60J3ZYtW2ratGkZJnQlydXVVVOnTlWLFi0kST/++KM2bdqUblzqCt47e+hmNC6rMUZ19OhRnTx5UpL08ssvZ5nkk6SaNWuS0DWgEydO6L333pMk1ahRQ7/99lu273XdunW1c+dO1a5d+36ECAAAAAAAADvKk6TuhAkTrMdff/21TCZTluNNJpMmT56c4fyZM2em2yirefPm1s3PTCaTNm7caN08aebMmZKkTZs2pRmTuiIup5tvHTp0SAMHDtTDDz+sIkWKyMvLS5UrV1ZwcLCmTZumS5cuZTp3+fLl6tatmx544AF5eHjI19dXDRo00IQJE7JsMZGVmJgY67GPj89drZFaQkKCJk+erJYtW8rf319ubm7y9/fXU089pQULFiizIm7Le2J5XyMjI/Xmm2+qWrVqKlSokEwmkyIiItSoUSOZTCY1a9Ys21g+/vhjmUwmubu7p+kfm5/fq6SkJE2dOlVPPPGESpYsKVdXVxUtWlSVK1fWk08+qXHjxlmT8Lb4/PPPrT2oJ02aJA8PjxzNK1SokB588MEMz4WGhuqVV15RlSpV5OXlJR8fH9WsWVNDhw5VZGRktmtfu3ZN48ePV8OGDeXn5yd3d3eVLVtW3bt319q1azOdFxERkeb3NCEhQePHj1dgYKB8fX3T/M5aHDlyRL1791bZsmXl7u6uBx54QC+88IIOHjyYbZxZbZR25+c2NjZWw4cPV7Vq1eTp6SlfX1+1bNlSy5cvz/I1Dh48qE8++URBQUHW971w4cKqVauWhg4dqtOnT2c4LyAgwFqlK6X/d8xyj+506tQpvfXWW6pZs6Z8fHzk5eWlKlWq6NVXX81yk8mc/p4CAAAAAGD3TdHYKM1mub5R2tWrV7Vu3TpJUpMmTfTQQw/laN5DDz2kxo0ba+vWrVq7dq2uXbumQoUK5XZ4OZKSkqL33ntP48aNS5fYPH78uI4fP65Vq1bp6tWrGjJkSJrzly9fVo8ePaz3wCIxMVG7du3Srl27NHXqVK1Zs0YVK1a0KS4/Pz/r8fr16/XGG2/YdmGpHDp0SO3bt9eJEyfSPB8dHa01a9ZozZo1mjt3rubPny8vL69M19m1a5fatm2ruLi4dOd69+6tHTt2aMuWLYqIiMgyMfvTTz9Jktq2batixYrl+Drs9V5du3ZNrVq10vbt29OtefnyZR0/flzr16+X2WzW8OHDc3w9krR06VJJUsWKFdWyZUub5mZk4sSJGjp0qJKTk9M8HxoaqtDQUE2ZMkVz585V586dM5wfGhqqp556SqdOnUrz/NmzZ7V48WItXrxYvXr10o8//phpRb4kxcXF6bHHHtOBAwcyHbN8+XL17NlTiYmJ1uciIyM1e/ZsLVq0SIsWLcrJJWfr8OHDevLJJ9P0405ISNCGDRu0YcMGjR07NsP37e+//9ajjz6a7vn4+HgdOHBABw4c0NSpU7VkyRI9+eST9xyn5d4mJCSkef7YsWM6duyYpk2bpokTJ2bbLzyr31MAAAAAAGA8uV6pu3PnTmuVoa39Ii3jk5KStGvXLknS888/r/j4eB06dMg6btWqVdbNz+Lj49WkSROFhoYqPj5ezz33nCSpcePGacasXr06x3G8/fbb+vTTT2U2m1W7dm39/PPPOnnypOLi4nTkyBHNnDlTbdu2lZNT2tuXlJSkdu3aad26dXJ3d9e7776rffv2KTY2VqdPn9bMmTNVrlw5/fvvv2rXrp3NFbvVqlVTuXLlJEkrVqxQ//79dfjwYZvWkG4nyYKCgnTixAmVLl1aX3/9tcLCwhQXF6ewsDCNGTNGHh4e+vXXX/Xaa69luVbXrl3l5eWl6dOn69SpU7pw4YJ+//13+fr6qmfPnnJzc5PZbNbcuXMzXWPv3r3WisNevXrZdC32eq8+/fRTa0L3tdde086dO3X27FmdO3dOe/bs0ezZsxUcHCw3NzebrufYsWM6d+6cpNt/FLlXCxcu1JAhQ5ScnKxq1appyZIlOn/+vCIjIzV9+nSVKlVKN27cUI8ePay/c6nFxcWpVatWOnXqlNzd3fXhhx8qLCxMMTEx2rx5s1q1aiVJmjNnjoYOzbqf3aBBg/Tvv//qww8/1OHDhxUbG6t9+/bpsccek3S7QteS0C1WrJh++OEHnT59WufPn9fChQtVqlQp9erVS5cvX77n+9K+fXs5OTlp+vTpOnnypGJiYrRmzRrrH6Hef//9DKtgTSaT6tevr08//VSbNm3S0aNHFRsbqyNHjmjevHkKDAxUfHy8evToofPnz6eZGxoamuW/Y5Z/yyy2b9+up59+WgkJCSpTpoxmzJihyMhInT9/XosXL1aVKlWUnJysgQMHWv8QkJmsfk8BAAAAAIDx5HqlburKzxo1atg0t2bNmtbj8PBwtWjRQi4uLvL29k5TLerp6Slvb+80cy3nXVxuX5Kzs3O6MTmxe/duffHFF5Kkdu3aacmSJWkSc76+vqpWrZpeeOEFa/LaYvLkydq6datcXV21fv16NW7c2HrOz89PL7zwglq2bKk6dero8OHDmjJlSraJsNRMJpMmTJigZ555RpI0depUTZ06VeXKlVNgYKDq1q2rJk2aqGHDhllWTA4cOFAxMTGqUKGCduzYoZIlS6a5vvfee0/16tVTmzZtNHv2bA0aNEh169bNcK2EhATt379fDzzwgPW5J554wnocHBysZcuWac6cOdY+sXeaM2eO9bXbtWuX4/thz/dq1apVkqTOnTvr22+/TbN2qVKlVK9ePZsT1FLa35+cVrln5ubNmxo0aJAkqVKlStq+fXuaau++ffuqSZMmqlu3rq5cuaIBAwZo7969adb46KOPrNWsCxYsUMeOHa3nmjRpotWrV6tTp0769ddf9fXXX6t///56+OGHM4znzJkz+u2339S2bVvrc6njeeedd5SYmCh3d3dt2LBBtWrVsp7r3r27Hn/8cdWpU0dRUVH3cFduu379uvbt26fSpUtbn2vdurXWrl2rqlWrKiEhQbNmzdLYsWPTzKtVq5Z27tyZbj0/Pz9Vq1ZN3bt3V1BQkLZt26YpU6boww8/tI7x8vLK9t+x1AYOHKjk5GT5+vpq27ZtaSrdu3btqqZNmyowMFAnT57UwIED1b59+0x/77P7PQUAAAAAOLgU2h0YTa5X6qb+eq+tVWCpNzez19eEv/rqK0m3EzAzZ87MstLSkkC2mDhxoqTbm5ilThKmVq5cOQ0cOFCSsqxezczTTz+txYsXq2zZ/+00HxkZqWXLlun9999Xs2bNVKZMGX3wwQe6du1auvknTpzQihUrJEnjxo1Lk9BNrXXr1mrevHm2cb799ttpEkV36t27tyQpLCwsXcJQul0xO3/+fEmyVvbmlD3fK0uSOHVSMDek/tzf62Z/v/76qzUB+sknn6RJoFpUrlxZ77zzjiRp37592r9/v/VccnKytd/tU089lSaha+Hk5KTJkydbK6GnTp2aaTxt2rRJk9BN7cKFC/rtt98kSf3790+T0LUoU6ZMpn8YsNXIkSMzfO8eeOABa7Jz9+7dNq/r4uKiZ599VpL0+++/33V8qd+L4cOHZ9i6pESJEvr4448lSefOndPKlSszXS+731MAAAAAAGAsuZ7UzWxzLaP4448/JN2u/LSlt+u///5r3XSoZcuWunr1aqYPSyXj33//rZs3b9ocY9euXRUeHq4lS5aob9++qlq1aprN6GJiYjRmzBjVr19f0dHRaeZa+ryaTCY1bdo0yzj/85//SJL27NmTaSzBwcFZxtq2bVtrMtFSkZvaunXrdOHCBUm2t16w53tVu3ZtSdKMGTM0Z86cND1g84stW7ZIklxdXdWhQ4dMx/Xs2TPdHEk6cOCAdYO57t27Zzq/fPnyatiwYbr5d8rqs7J9+3al/P+/Cnbp0iXTcV27ds30nC2eeuqpTM9ZKqTvbJ+Q2rJly9SjRw9VqlTJuumY5WHpbxsWFnbX8aW+j1nd+y5dulj/YHG39x4AAAAAABhPrrdfSF0NePHiRZvmWhJId65zv8THx1sTjBlthpSV1AmcnCaeUlJSFBcXp1KlStn0WpLk5uamLl26WBNgV65c0Y4dO7Ro0SLNmTNHN2/e1KFDh9S/f38tW7YsXZxmsznHr3tnYji17DZ7c3NzU8+ePTVlyhT9/PPP+vzzz9NUzVoSvZUqVVKjRo1yFI9k//dq1KhRWr58uS5duqTevXvrtdde0+OPP64GDRooKChITZo0SVcdnBOpP/epfx/uxsmTJyXdvrceHh6ZjqtcubLc3d2VmJhoTXanni9l30qlZs2a2rZtW5r5d8rqs5J6XlZtJ8qUKaMiRYrcc1/dMmXKZHrO0iIho57X169fV5cuXbR27dpsX+NeYrTcew8PD1WoUCHTcZ6enqpYsaKOHj161/c+J2z9txwAAAAAYDBm2i8YTa5X6qZOHoSGhto0N/UmQlklMvLKlStXrMc+Pj42zb3bBM6du9rfrcKFC6t169aaNm2atm7dKnd3d0nSL7/8otOnT99TnFnFmLpHaGYsLRiio6PTJMPi4+O1fPlySbZX6dr7vQoICND+/fvVt29f+fj46Nq1a1q3bp1Gjx6tFi1aqFy5cvryyy+t1ac5lfpzfzeb4KUWHx8vSTnqLW0ZY5lz53F2a1jeg9Rz7pTVZ+Xq1as5fq276ZV9p5wk3DP61sHQoUOtn+EXXnhBK1eu1LFjxxQTE2Pd7MzSYzk5Ofmu47PlvbvXe58Tfn5+2T4AAAAAAMD9k+tJ3QYNGsjZ2VmStHHjRpvmWsa7uLioQYMGuRxZ9goXLmw9zipBkpHUyZf9+/fLbDbn6JFRr8x7FRgYqJdeesn6c0hISLo4ixQpkuMYs6oAzIkGDRqoSpUqkqSffvrJ+vySJUt048YNSdLzzz9v05r54b0KCAjQ9OnTFRsbq507d+qrr75Sp06d5OnpqaioKL311lt64403bIqtcuXK1l6vWX2dPicsyb7UCdPMWPovp06Qpz7Obg3LeVsT7Bap35Ocvtb9dv36dWuP4XfffVczZ85UcHCwKlWqpGLFisnb21ve3t658ocaW967e733AAAAAADAeHI9qevt7a1WrVpJup2UOnLkSI7mHT58WFu3bpV0e5OuQoUK5XZo2fLx8ZG/v78k6a+//rJpbqVKlazHqZOo9lKzZk3rceqvkVvivHz5ssLDw+9bPJak7fLly61VtpbWC48//nia+5cT+em9cnV1Vf369TV48GAtW7ZMp06dsraSmDJlis6dO2fTepaWGuHh4da+wXfDkoQ+fvx4lonGY8eOWc+nTlynPk5dRZ+RgwcPpptzN7FKWVconz179p5bL9ytI0eOWO/TM888k+m4AwcO3PNrWe5HQkJClr+nCQkJOn78eJo5eSEuLi7bBwAAAADAwFJS8t8DWcr1pK50+yvKFgMHDsx28zSz2ayBAwdafx42bFhehJUjTz75pCTpt99+sylRUbNmTWufzhkzZuRJbLZI3XIhdf9QS8JdkqZPn37f4unVq5dMJpNu3LihJUuWKDIy0lqZbWvrBYv8+l4VL17c+hk2m802b5j11ltvWdsDDBo0KMeVn9euXUvTB7dJkyaSpFu3bmnFihWZzlu0aFG6OZL08MMPq2jRopKkxYsXZzo/MjJSO3fuTDffFo0aNZKT0+1/jpYuXZrpuCVLltzV+rkh9WZ4mbVWuHr1qn755ZdM13B1dc12DSntfczq3i9btkxJSUnp5uQ2X1/fbB8AAAAAAOD+yZOkbsuWLa19VP/44w+9/PLLunXrVoZjb926pf79+2vDhg2SpH79+ikoKCgvwsqRwYMHS7qdIOvXr1+mcUuyJlMkyWQy6a233pIkbd26VWPHjs3ydZKTk3Xs2DGbYjt+/LhGjBih2NjYLMedOnVKU6dOlXS7TUHqVhZVq1ZVu3btJEmfffZZti0yrly5YnOlaUYqVKigxx9/XNLtCt25c+cqJSVF7u7u6tGjx12tac/3Krt+t6nHFytWLMuxd6pYsaJGjx4t6XZf6nbt2mW7UdW+ffvUoEED7d+/3/pcu3btVLJkSUnSiBEjMlwjPDxc48aNkyTVrVtXtWvXtp5zdnZW3759JUmrV6/OMDGckpKigQMHWhOUL7/8si2XauXv76/g4GBJ0g8//KB//vkn3Zhz587p448/vqv1c0PqfseWXtCpmc1mDRo0KMv3ys/PTyaTSdLtquPM1KlTx/pefPrppxm2QImNjdWIESMkSaVLl7b+XgMAAAAAgIIvT5K6kvTNN9+oadOmkqQff/xRtWvX1rRp0/Tvv/8qLi5O//77r6ZPn666detq2rRpkqTmzZvr66+/zquQciQwMNBaabx8+XI1atRICxcu1OnTp3Xp0iX9+++/mjt3rjp06GDdEMli0KBB1oT0iBEj1L59e61cuVJnzpzRpUuXdPLkSa1du1bvvvuuKlasqK+++sqm2G7cuKGxY8eqbNmy6tmzp2bNmqVDhw4pJiZGcXFx+uuvvzRu3DjVrVtXMTExkqSRI0daN02zmDJlikqWLKnExES1atVKb7zxhrZt26YLFy4oLi5OR48e1eLFi9WvXz+VK1dO27Ztu7ubeQdLRe6mTZus965du3Z3XeVnz/eqZs2a1s/rnj17FBUVpdjYWB04cECjR4/W+++/L0l65JFH9Mgjj9h8bcOHD9eLL74o6fYfRipVqqT3339f27Zt05kzZxQXF6fDhw9r9uzZ6tChgwIDA60tECzc3Nw0ceJESbf/INCoUSMtW7ZMUVFROnv2rGbNmqXGjRvr8uXLcnFx0TfffJMujvfff19ly5aVJPXs2VNjxozRsWPHFBcXp61btyo4ONia4HzjjTf08MMP23ytFuPHj5e7u7sSExPVsmVLTZ06VWfOnFFUVJQWL16sxo0bKzEx0Vo9fL+VKlVKzZo1kySNHTtWH374ocLCwhQbG6vNmzerffv2mjFjhmrUqJHpGp6entbWKN98841CQ0OVmJiopKQkJSUlpflWw+TJk+Xs7KyLFy+qcePGmj17ts6ePauoqCgtXbpUjz/+uDXZO3ny5DRVwAAAAAAA2MTerRZov2Cz7LeAv0ve3t5at26d3nzzTf3www86dOhQplV8zs7OeuWVV/TFF1+kS0Daw/jx42UymfT5559r79696tmzZ4bjWrRokeZnV1dXrVixQv369dPixYu1cuVKrVy5MtPXsfVa3d3d5ebmpsTERC1cuFALFy7MdKyLi4vee+89a0VqauXKldOWLVvUtWtXHThwQJMnT9bkyZNzLc7M9OjRQ4MGDVJiYqJOnTol6e5bL1jY670ym83auHFjlpXODz74YJbvUVZMJpOmTZum//znPxo5cqQuXryojz/+OMtK1W7duqXbYLBnz546d+6chg0bpiNHjlj79abm6empuXPnqn79+unO+fn5ae3atWrbtq1OnTqlDz74QB988EG6cb169dLnn39+F1f6P9WrV9f8+fP19NNPKyYmRv37909z3sPDQ4sWLdLAgQN16dKle3qtu/Xdd9+pcePGio2N1ahRozRq1Kg053v27KlWrVpZE/IZGTp0qPr27atdu3al6X0tSX/++af1jw2NGjXSzz//rN69e+vMmTN64YUX0q3l7OysiRMnZvi+AgAAAACAgivPKnWl24mwb7/9VgcPHtR///tf1atXTyVKlJCrq6uKFy+uunXravjw4Tpw4IC++eabfJHQlSQnJydNmDBBISEhevnll1WlShV5eXmpUKFCqly5soKDgzV9+nTrV9NT8/Hx0aJFi7Rlyxb169dPVatWlbe3t1xcXFSsWDHVr19f77zzjnbs2KHPPvvMpriqVKmi6OhoLVy4UAMGDFCjRo3k7+8vV1dXubm5yd/fX40bN9aIESMUGhqaLuF051r79+/X3Llz1blzZ5UrV86aNC5Tpoxatmyp8ePH69ixY2rfvr2ttzBDRYsWTbNWsWLF1LZt23ta017vVUhIiCZMmKC2bduqWrVqKlKkiFxcXFSiRAkFBQXpyy+/1KFDh1S9evV7ur433nhDJ06c0OTJk9WhQwcFBASoUKFCcnNzU8mSJRUUFKQPPvhAYWFhWrRokUqVKpVujSFDhuiff/7Ryy+/rEqVKsnT01OFChVSjRo19Oabb+ro0aPq3LlzpjHUrFlToaGhGjdunBo0aKCiRYvK1dVVZcqUUdeuXbVmzRrNnj07VypFO3XqpL/++ku9evVS6dKl5ebmprJly+q5557Trl277N5ioHr16tq3b59eeukllS1bVq6uripRooRatGihOXPmaP78+dbewJnp06ePFi1apJYtW6pYsWJydnbOdGz37t0VFhamIUOG6KGHHlKhQoXk6empypUrq3///jpw4IAGDBiQ25cJAAAAAADyOZM5u13MAADIhotbWXuHUGBMKNXc3iEUKG+f/9PeIQDIY/FLh2Y/CDni0+XevnkFAI4k6eYZe4eQq25snmnvENLxbNrH3iHka3laqQsAAAAAAAAAyF0kdQEAAAAAAADAQPJsozQAAAAAAAAABpCSYu8IYCMqdQEAAAAAAADAQEjqAgAAAAAAAICB0H4BAAAAAAAAcGRm2i8YDZW6AAAAAAAAAGAgJHUBAAAAAAAAwEBovwAAAAAAAAA4shTaLxgNlboAAAAAAAAAYCBU6gIAAAAAAACOjI3SDIdKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHBkbpRkOlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgyM+0XjIZKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHFkK7ReMhkpdAAAAAAAAADAQkroAAAAAAAAAYCC0XwAAAAAAAAAcGe0XDIdKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHJmZ9gtGQ6UuAAAAAAAAABgISV0AAAAAAAAAMBDaLwAAAAAAAACOLIX2C0ZDpS4AAAAAAAAAGAhJXQAAAAAAAAAwENovAAAAAAAAAI7MTPsFo6FSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAR5ZC+wWjoVIXAAAAAAAAAAyESl0AAAAAAADAkbFRmuFQqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgCNjozTDoVIXAAAAAAAAAAyEpC4AAAAAAAAAGAjtFwAAAAAAAABHRvsFw6FSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAR2Y22zsC2IhKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHFlKir0jgI2o1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwJHRfsFwqNQFAAAAAAAAUOAlJSXp999/17Bhw9S4cWOVKFFCrq6uKlq0qOrWravhw4fr5MmTWa4REREhk8mUo8fevXvz7Fqo1AUAAAAAAABQ4NWpU0cHDhxI9/zly5cVEhKikJAQff311/r222/1wgsv2CHCnCOpCwAAAAAAADgys2O0X7hy5YqcnJzUsmVLde/eXY0aNVLp0qV1+fJlrV69Wv/3f/+n2NhY9e3bVyVKlFDbtm2zXG/VqlVq0qRJpue9vLxy+xKsSOoCAAAAAAAAKPB69Oihl156SVWrVk3zvJ+fn15//XW1aNFC9erV07Vr1/T2229nm9T19PSUt7d3XoacKXrqAgAAAAAAACjwxo8fny6hm1r16tXVt29fSVJoaGi2/XXtiUpdAAAAAAAAwJGlOEb7hZx4+OGHrcdnz57Vgw8+aMdoMkelLgAAAAAAAABIioqKsh4XKVIkR3Nu3ryZV+FkiqQuAAAAAAAAAEhaunSppNt9dqtVq5bl2IEDB8rHx0fu7u5yd3dXzZo1NXjwYB07dizP46T9AgAAAAAAAODIzGZ7R5DOxYsXsx3j6+ubq685Y8YM/f3335KkV155Rc7OzlmOP3TokPX45s2bCg0NVWhoqL777jt99tlneuONN3I1vtRI6gIAAAAAAADIV/z8/LIdY87FZHRoaKgGDRokSXrwwQf17rvvZjjOyclJTz75pJ5++mnVq1dP5cqVU6FChRQREaFly5Zp7NixunLligYNGiRvb2/rxmu5jaQuAAAAAAAA4MgcfKO0CxcuqEOHDrp69arc3Nw0b968TPvpli9fXuvWrUv3fLVq1TR8+HB16tRJjRs3VmxsrIYNG6auXbuqcOHCuR4zPXUBAAAAAAAA5CtxcXHZPnLD5cuX1bp1ax0/flzOzs6aN2+eGjVqdNfrVa9eXR9++KH1GlatWpUrcd6JpC4AAAAAAACAfMXX1zfbx726du2a2rZtq7/++ksmk0lTp05V165d73ndTp06WY9DQkLueb2M0H4BAAAAAAAAcGQO2H4hISFBHTp00Pbt2yVJkyZNyrX+t/7+/tbjS5cu5cqadyKpCwBAPvLKG272DqFAWfZVdXuHUGBsjz5i7xCADPl0+dzeIQAAAIO5deuWunbtqg0bNkiSxo4dq4EDB+ba+ufPn7ce50ZFcUZovwAAAAAAAADAISQnJ+vZZ5+19rp9//33NXz48Fx9jaVLl1qP69Spk6trW1CpCwAAAAAAADgys2O0XzCbzXrxxRe1ePFiSdKQIUP00Ucf2bRGZGSkypUrl+n5AwcOaNSoUZIkPz8/PfXUU3cdb1ZI6gIAAAAAAAAo8AYNGqRZs2ZJkp577jl99NFHunr1aqbjPTw85OKSNn366KOPqmnTpurYsaPq1Kmj0qVLy8nJSREREfrll1/0xRdf6Nq1a5KkL7/8UoULF86TazGZzWZznqwMAHAYLm5l7R1CgXHl49b2DqFAafPVSXuHUGDQUxcAAOB/km6esXcIuerGtLfsHUI6ni99ketrmkwmm8bPmDFDffr0SfNc0aJFdfny5SzneXl56auvvtLLL79sa4g5RqUuAAAAAAAA4MDMKdR85tSMGTO0detW7dq1S5GRkYqNjVViYqKKFi2qhx56SE888YReeukllS5dOk/jIKkLAAAAAAAAoMDLjYYFnTt3VufOnXMhmnvjZO8AAAAAAAAAAAA5R6UuAAAAAAAA4MhSUuwdAWxEpS4AAAAAAAAAGAhJXQAAAAAAAAAwENovAAAAAAAAAI7MTPsFo6FSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAR5ZitncEsBGVugAAAAAAAABgICR1AQAAAAAAAMBAaL8AAAAAAAAAOLKUFHtHABtRqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgCOj/YLhUKkLAAAAAAAAAAZCpS4AAAAAAADgyMxme0cAG1GpCwAAAAAAAAAGQlIXAAAAAAAAAAyE9gsAAAAAAACAI2OjNMOhUhcAAAAAAAAADISkLgAAAAAAAAAYCO0XAAAAAAAAAEeWYrZ3BLARlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgyc4q9I4CNqNQFAAAAAAAAAAMhqQsAAAAAAAAABkL7BQAAAAAAAMCRpZjtHQFsRKUuAAAAAAAAABgISV0AAAAAAAAAMBDaLwAAAAAAAAAOzJySYu8QYCMqdQEAAAAAAADAQEjqAgAAAAAAAICB0H4BAAAAAAAAcGQpZntHABtRqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgCMzp9g7AtiISl0AAAAAAAAAMBCSugAAAAAAAABgILRfAAAAAAAAABxZitneEcBGVOoCAAAAAAAAgIFQqQsAAAAAAAA4shQ2SjMaKnUBAAAAAAAAwEBI6gIAAAAAAACAgdB+AQAAAAAAAHBkbJRmOFTqAgAAAAAAAICBkNQFAAAAAAAAAAOh/QIAAAAAAADgyMwp9o4ANqJSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAR5ZitncEsBGVugAAAAAAAABgICR1AQAAAAAAAMBAaL8AAAAAAAAAODBzSoq9Q4CNqNQ1sJkzZ8pkMlkfbdu2zdG8bt26pZn33Xff5XGkjqFPnz5p7qvl4erqqhIlSqhZs2YaP368Ll26lOuvnfqzkBHLuZkzZ+b6a99PSUlJmjt3rnr27KlKlSrJ29tb3t7eqlSpknr06KE5c+bo1q1bOVorOjpab775pqpXry4vLy/rPfrqq6/SjPvll1/UqlUrlShRQi4uLjKZTCpatKj1fEG5twAAAAAAwDio1C1A1q1bp6ioKJUsWTLTMRcvXtTKlSvvY1S2iYiIUIUKFSRJf/75p4KCguwbUC5ISkpSTEyMNm/erM2bN2vixIlavny56tWrZ+/QDGXLli16+eWXFRYWlu5ceHi4wsPDtWjRIo0ZM0bTpk1TkyZNMl3r2rVratiwoY4fP57la37//fd69dVX7zl2AAAAAACA3ESlbgFRuHBhJScna968eVmOW7BggRITE1W4cOH7FJljio+Ptz4uXryoPXv2qHfv3pKks2fPqn379rpy5YqdozSOZcuW6cknn1RYWJhcXFz02muvaePGjTpz5ozOnTunzZs3a8CAAXJxcdHRo0f15JNP6pdffsl0vXnz5un48ePWSvXIyEjr+zVgwADruNGjR0uSHn/8cYWEhOjixYuKj4/XmTNn8vqSAQAAAAC4f1LM+e+BLJHULSC6desmSZozZ06W42bNmiVJ6t69e57H5MgsbQG8vb1VtGhR1atXT7NmzVKvXr0kSefPn9cPP/xw3+Ixm80ym83q06fPfXvN3HLkyBE9//zzSkxMlJ+fn7Zv365vv/1WzZo1U5kyZVSqVCk1adJEkydP1o4dO+Tn56fExEQ9//zzGVb1StJff/0lSapVq5ZeeeUVlS1b1vp+ubq6SrrdnuHs2bOSpGHDhql27doqWrSovL29VahQIetaRr63AAAAAADAmEjqFhDPP/+8nJ2dtX//fh08eDDDMf/++6927twpk8lkTS7i/vrwww+tx+vXr7djJMbx6quv6vr16zKZTFqyZIkCAwMzHVuvXj0tWbJEJpNJ165dy7R1wvXr1yUpTW/czMZkNw4AAAAAAOB+I6lbQJQuXVotW7aUlHm17uzZsyVJTZs21YMPPpjlemazWbt379b777+vRo0aqVixYnJ1dZWvr68CAwM1cuRIxcbGZrlGXFycRo0apccee0xFixa1bhhWo0YNdevWTT/88IPi4+Ot4wMCAqz9dCWpefPm6TYd27hxY7rXSUhI0OTJk9WyZUv5+/vLzc1N/v7+euqpp7RgwQKZzRmX7N+5uVhkZKTefPNNVatWTYUKFZLJZFJERESW12irChUqyNvbW5J0+vTpdOdDQ0P1yiuvqEqVKvLy8pKPj49q1qypoUOHKjIy8q5fNyebed28eVM//PCD2rZtqzJlysjd3V3+/v6qU6eO3nzzTe3cuTPTuefPn9d7772nunXrytfXV+7u7ipfvryef/557d69+67j3rt3rzZt2iRJ6tGjR456LAcFBalHjx6SpI0bN2rv3r3WcwEBAWnuw6ZNm9J8voKCgqyfi4CAAOu8Oz+LqT+H+fXeWjbus9yzXbt26bnnnlP58uXl5uaW5voAAAAAAA7O3q0WaL9gMzZKK0B69+6tdevWae7cuRo7dqycnP6XszebzdZkr6W3a1ZWrFihTp06pXv+0qVL2rt3r/bu3asffvhBq1ev1qOPPppu3OHDh9WiRQudP38+zfMxMTGKiYnR4cOHtWTJEtWqVUsNGjSw7UJTOXTokNq3b68TJ06keT46Olpr1qzRmjVrNHfuXM2fP19eXl6ZrrNr1y61bdtWcXFxdx1LTlnelzuTzRMnTtTQoUOVnJyc5vnQ0FCFhoZqypQpmjt3rjp37pzrMR08eFCdOnVKt3FYdHS0oqOjtX//fs2YMUOXLl1KN3fRokXq27evrl27lub506dPa+7cuZo7d65Gjx6tDz74wOa4Fi9ebD3u379/jue9/PLLWrBggSRpyZIldt2ULj/c2ylTpuiNN95I99kCAAAAAADGRKVuAdK5c2f5+PjozJkz2rBhQ5pzmzZt0smTJ+Xp6Wntv5sVZ2dnNW/eXJMmTdLWrVt1/PhxxcTE6NChQ/rhhx9UvXp1nT9/Xl26dFFCQkK6+f3799f58+fl5eWl8ePH6+DBg4qOjlZERIS2bt2qL7/8UvXq1bNWyUq3k5eHDh2y/rxq1ao0G47Fx8erSZMm1vORkZEKCgrSiRMnVLp0aX399dcKCwtTXFycwsLCNGbMGHl4eOjXX3/Va6+9luX1du3aVV5eXpo+fbpOnTqlCxcu6Pfff5evr2+298oWkZGR1g3SypYta31+4cKFGjJkiJKTk1WtWjUtWbJE58+fV2RkpKZPn65SpUrpxo0b6tGjh3bt2pWrMUVERCgoKEjHjx+Xu7u7hg0bpj179igmJkbnzp3Tn3/+qf/+978qU6ZMurmrVq1Sz549de3aNdWrV08LFy7UqVOnFBcXpz179uiFF16QJP3f//2fZsyYYXNsW7dulSS5urrq8ccfz/G8xx9/3Nobd9u2bdbnQ0NDFR8fr+eee06S1Lhx4zSfr9WrV+v5559XfHx8lp/F1J/DrOSHe3vkyBENGjRIjz32mFavXq2oqChFRkbqm2++ydE1AAAAAACA/IdK3QLEy8tLXbt21cyZMzV79mw98cQT1nOW1gudOnVS4cKFs61Ibdeundq1a5fu+WLFiqlGjRp65pln9Oijj+r48eP6+eef1bdvX+uYK1euWJNxY8eO1aBBg6znihcvrgcffFCPP/64hgwZki7+1NW0np6e1lYFGRk4cKBiYmJUoUIF7dixQyVLlrSe8/X11Xvvvad69eqpTZs2mj17tgYNGqS6detmuFZCQoL279+vBx54wPpc6vuXW8aMGWM9bt68uaTbX8233KNKlSpp+/bt8vPzs47r27evmjRporp16+rKlSsaMGBAmpYC9+r1119XbGysXF1dtXbtWjVr1izN+VKlSikoKEijR49O83xCQoL69esns9ms9u3ba+nSpXJx+d8/KfXq1dPMmTNVpkwZjR07Vu+++66eeeYZeXh45Dg2SwV2xYoV5e7unuN5Hh4eqlixosLCwhQeHm593vL5ssTp7Oyc4WfM29vbps9iZvLDvY2KilLjxo31xx9/yM3Nzfp86j8qAAAAAAAcnDnF3hHARlTqFjCW1gpLly61fmX7+vXr1q+x56T1Qk54e3urS5cukqTff/89zbnUX/EuXbp0rrzenU6cOKEVK1ZIksaNG5cmoZta69atrcnTuXPnZrre22+/nSahm5uSkpIUFhamQYMG6fvvv5ck+fn56ZVXXpEk/frrr4qKipIkffLJJ2kSuhaVK1fWO++8I0nat2+f9u/fnyuxHT16VKtXr5Ykvfnmm+mSjqmlTipK0vz58xUVFSUXFxd9//336c5bfPDBBypUqJCio6O1bt06m+Kz/PHhbiqmLZub3Y+WGhnJT/f2s88+S5PQBQAAAAAAxkZSt4AJCgpS+fLlde3aNS1dulSStGzZMsXHx6tUqVJ68sknc7xWUlKSZs2apQ4dOqh8+fLy8vJKs1nUhAkTJElhYWFp5vn6+lo3YhsxYoQ2bdqU6WZld2v9+vUym80ymUxq2rSprl69munjP//5jyRpz549ma4XHBycq/Glvk+urq6qXr26vv76a0m3E7rLli1TsWLFJElbtmyRdLvFQIcOHTJds2fPntZjy5x7tX79eutxnz59bJprSeb/5z//kY+PT6b3Pzk5WdWrV5eU9XtQ0OSXe1usWDHVr1//7i4CAAAAAOAY7L0pGhul2Yz2CwWMyWTSc889p7Fjx2rOnDnq1auXtfXCs88+K2dn5xytEx0drTZt2igkJCTbsZcvX0733Jdffqlu3brp2LFjCgoKUsmSJdW0aVM1aNBATzzxhGrVqmXbhd3Bkkg2m80qVapUjuZER0dneq5ixYr3FE923N3d9dBDDyk4OFgDBw5ME/PJkycl3W69kFVrgsqVK8vd3V2JiYmKiIjIlbgsm3e5u7tbk4M5ZXkP9u3bJx8fnxzNyeo9yIivr6/OnTunixcv2jRPknXjsYwqn++H/HJvc+OzfTf3HwAAAAAA5B0qdQsgS4uFP/74Q3v27LFWDNrSeqF3794KCQmRi4uLBg0apN9//10nTpxQbGysdbOo4cOHS7pd0Xunzp07a+PGjWrdurVcXFwUFRWlRYsWaejQofrPf/6jWrVqadWqVXd9jRklkrOT0YZuFqn7p+aG1Jtq3bhxw9qzd8yYMemS0PHx8ZKUo56tljGWOffKsmmbt7d3mk3rciK334OMWBKS4eHhSkxMzPG8xMREay/dChUq2PSauSW/3Nvc+Gz7+fll+wAAAAAAAPcPlboFUPXq1RUYGKg9e/bo6aefVkpKimrVqmVtQ5Cd8PBwrVmzRpL09ddf69VXX81w3PXr17Ncp0mTJlqzZo3i4+O1a9cu7dixQ+vWrdO2bdt04MABBQcHa8GCBerRo4dtF6j/JTeLFClircjMT2zZVMtSiXn16tVsx1r6JOe0ejM7hQsXtr62pZ1FTlmusWPHjvrll19yJZ47NW7cWNu2bdOtW7e0bds2tWjRIkfztm7dqlu3blnXsIf8fm8BAAAAALAw0+7AcKjULaAsVbmWakVbqnT/+usv6/EzzzyT6bgDBw7kaD0fHx898cQT+uCDD7Rlyxb99ddfKl68uCRp5MiROY4rtUqVKkm6XdFouUajCggIkHT76/pZVbIeO3bMet4y515VrlxZ0u3K1iNHjtg01/Ie5NambRmxbMYnSVOnTs3xvNRju3btmqsx5VR+v7e2iIuLy/YBAAAAAADuH5K6BdQzzzwjV1dXSZKzs7Oee+65HM9N/TX35OTkDMecOnVKmzdvvqvYatWqpWeffVbS7d6hKSkp1nOWmLN6bUlq1aqV9Xj69Ol3FUd+0aRJE0nSrVu3tGLFikzHLVq0KN2ce/XEE09Yj2fNmmXTXMt7cOrUqTSbguWmxx57zFppu2DBAm3atCnbOZs2bdLChQslSc2aNVO9evXyJLbs5Pd7awtfX99sHwAAAAAA4P4hqVtAFStWTGFhYTp8+LCOHj2a483EpLQbKy1fvjzd+Vu3bunll1/ONOkaExOjmJiYLF/j2LFjkm4ni5yc/vcx9PPzs35N/ezZs5nOr1q1qtq1aydJ+uyzz7Rx48YsX+/KlSs6d+5clmPspV27dipZsqQkacSIERluShUeHq5x48ZJkurWravatWvnymtXqVJFwcHBkm5vbrd169ZMx97ZO/n555+3xt2/f/8s3y9JioiIsKkvrsX3338vT09Pmc1mdenSRXv37s107L59+9SlSxeZzWZ5eXnpu+++s/n1cosR7i0AAAAAAJKkFHP+eyBLJHULsAoVKqh69eppkrQ5Ua9ePeucwYMHa9KkSTp+/Liio6O1Zs0aNWvWTOvWrVONGjUynH/w4EE98MAD6tmzp+bMmaNDhw4pNjZW58+f17Zt29S7d2/rJmmWil0LT09P1axZU5L0zTffKDQ0VImJiUpKSlJSUpLM5v/9Uk+ZMkUlS5ZUYmKiWrVqpTfeeEPbtm3ThQsXFBcXp6NHj2rx4sXq16+fypUrp23bttl0H+4XNzc3TZw4UdLtFgyNGjXSsmXLFBUVpbNnz2rWrFlq3LixLl++LBcXF33zzTe5+vrffPON/Pz8dPPmTT355JN69913tW/fPsXFxenChQvaunWrPvjgAz366KNp5nl5eWnmzJlydnbWiRMn9Oijj2rcuHH6559/dPHiRV24cEF//fWXpk2bpvbt26ty5cp3tcFbjRo1NHv2bLm5uSkuLk4NGzbU66+/ri1btuj8+fOKiorS1q1b9cYbb6hhw4aKi4uTu7u7fvrpJ1WvXj2X7tLdye/3FgAAAAAAGBMbpSEdZ2dnzZgxQ23atFF8fLwGDx6swYMHpxkzbNgwFSpUSB9++GGGayQkJGjhwoXWr8Fn5IknntDYsWPTPT906FD17dtXu3btsiZ4Lf78808FBQVJksqVK6ctW7aoa9euOnDggCZPnqzJkydn+nru7u6ZnrO3nj176ty5cxo2bJiOHDmSppeshaenp+bOnav69evn6ms/+OCD2rhxozp06KCIiAiNHz9e48ePTzeuSJEi6Z5r06aNli9frt69eys6OlrDhw/X8OHDM3wdZ2dnOTs731WM3bp1U4kSJfTyyy/r33//1ZQpUzRlypQMx1apUkXTpk1T06ZN7+q1cpMR7i0AAAAAADAekrrIUNOmTbV79259/PHH2rBhgy5evKhixYqpXr16evXVVxUcHKxRo0ZlOLdRo0b6448/9Mcff2jr1q06ffq0oqKilJycLH9/f9WtW1fPPvusunXrZm21kFqfPn3k7e2t7777Tn/99ZcuXbqUaauHKlWqaP/+/VqwYIEWL16sPXv2KDo6WmazWcWLF9dDDz2k1q1bq0uXLtbNp/KrIUOGqFWrVvrqq6+0YcMGnT17Vk5OTnrwwQfVunVrvfXWWypXrlyevPYjjzyiw4cPa9q0aVq2bJn++ecfXb58WX5+fipbtqyCgoL09NNPZzg3ODhY4eHhmjp1qlatWqWDBw/q4sWLcnNzU+nSpVWrVi116NBB7du3v6feq82aNdOhQ4c0f/58rVixQvv27VNUVJQkWT9XHTt21NNPP52mN7O9GeHeAgAAAAAcXKr9jmAMJnPq77MDAHAXXNzK2juEAuPKx63tHUKB0uark/YOocDYHn3E3iEAAADkG0k3z9g7hFwVP7CtvUNIx2fyKnuHkK/RUxcAAAAAAAAADIT2CwAAAAAAAIAjS+GL/EZDpS4AAAAAAAAAGAhJXQAAAAAAAAAwENovAAAAAAAAAI6M9guGQ6UuAAAAAAAAABgISV0AAAAAAAAAMBDaLwAAAAAAAAAOzGym/YLRUKkLAAAAAAAAAAZCUhcAAAAAAAAADIT2CwAAAAAAAIAjS6H9gtFQqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgCOj/YLhUKkLAAAAAAAAAAZCpS4AAAAAAADgwMxU6hoOlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgy2i8YDpW6AAAAAAAAAGAgJHUBAAAAAAAAwEBovwAAAAAAAAA4shR7BwBbUakLAAAAAAAAAAZCUhcAAAAAAABAgZeUlKTff/9dw4YNU+PGjVWiRAm5urqqaNGiqlu3roYPH66TJ0/meL21a9eqY8eOKlOmjDw8PFS+fHk999xz2rVrVx5exW0ms9nM9nYAgHvi4lbW3iEUGFc+bm3vEAqUNl/l/D9kyNr26CP2DgEAACDfSLp5xt4h5KpLz7WwdwjpFJ27IdfXrFWrlg4cOJDlGC8vL3377bd64YUXshw3ePBgTZo0KcNzzs7O+vTTTzVs2LC7jjU7VOoCAAAAAAAAKPCuXLkiJycnPfnkk/rhhx908OBBxcbGKjw8XN98842KFSum69evq2/fvlq1alWm63zxxRfWhG5wcLB2796t6Ohobdy4UQ0aNFBycrLefvttLV26NM+uhUpdAMA9o1I391Cpm7uo1M09VOoCAAD8D5W6eS8vKnXfeecdvfTSS6patWqG548cOaJ69erp2rVrqlGjhg4dOpRuTExMjCpWrKj4+Hg1b95c69evl5PT/+pmb9y4odq1ayssLEwBAQEKCwuTm5tbrl8LlboAAAAAAACAI0sx579HHhg/fnymCV1Jql69uvr27StJCg0NzbC/7uzZsxUfHy9JGjduXJqEriR5enpq9OjRkqSIiIgsK37vBUldAAAAAAAAAJD08MMPW4/Pnj2b7vyKFSskSRUqVFBgYGCGa3Ts2FEeHh6SpOXLl+dBlCR1AQAAAAAAAECSFBUVZT0uUqRIuvMhISGSpIYNG2a6hru7u2rXri1J2rdvXy5HeBtJXQAAAAAAAMCRpeTDh51YNjfz8/NTtWrV0pw7c+aMtfVCxYoVs1zHcv7o0aPKiy3NXHJ9RQAAAAAAAAC4BxcvXsx2jK+vb66+5owZM/T3339Lkl555RU5OzunOR8TE2M9LlmyZJZr+fv7S5ISExN19epV+fj45GqsJHUBAAAAAAAA5Ct+fn7ZjsnNCtjQ0FANGjRIkvTggw/q3XffTTfm2rVr1mNLz9zMeHp6Wo9J6gIAAAAAAADIVeaU3G8PYCQXLlxQhw4ddPXqVbm5uWnevHkZ9tNNnUQ2mUz3M8R0SOoCAAAAAAAAyFfi4uLuy+tcvnxZrVu31vHjx+Xs7Kx58+apUaNGGY719va2Ht+4cSPLdVOfTz0vt5DUBQAAAAAAAJCv5Ha/3Ixcu3ZNbdu21V9//SWTyaSpU6eqa9eumY4vXry49TgqKirLtS9cuCBJcnd3J6kLAAAAAAAAIJel2DuA+y8hIUEdOnTQ9u3bJUmTJk1S3759s5xTtmxZ+fj4KD4+XuHh4VmOPXHihCSpatWqedKqwSnXVwQAAAAAAACAfOrWrVvq2rWrNmzYIEkaO3asBg4cmKO5derUkSTt3Lkz0zGJiYkKCQmRJNWtW/ceo80YSV0AAAAAAAAADiE5OVnPPvusVq1aJUl6//33NXz48BzP79ChgyQpPDxce/fuzXDMihUrlJCQIEnq2LHjPUacMZK6AAAAAAAAgAMzp5jz3SNPrtNs1osvvqjFixdLkoYMGaKPPvrIpjV69+4tHx8fSdLw4cOVkpK2d0VCQoJGjhwpSQoICFDbtm1zIfL0SOoCAAAAAAAAKPAGDRqkWbNmSZKee+45ffTRR7p69Wqmj6SkpHRrFC9eXKNGjZIk/fHHH+rYsaP27t2rmJgYbd68WS1atNDhw4clSZ9//rnc3Nzy5FpMZrM5b1LfAACH4eJW1t4hFBhXPm5t7xAKlDZfnbR3CAXG9ugj9g4BAAAg30i6ecbeIeSquI7N7B1COn7LN+X6mrZuWDZjxgz16dMnw3ODBg3S119/neE5JycnjRs3TsOGDbM1xByjUhcAAAAAAAAAbDBp0iStWbNGHTp0UKlSpeTm5qZy5crpmWee0fbt2/M0oStJLnm6OgAAAAAAAADkA7ndsKB169Zq3do+37YkqQsAAAAAAAA4MHNK9mOQv9B+AQAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAR0b7BcOhUhcAAAAAAAAADISkLgAAAAAAAAAYCO0XAAAAAAAAAAdmpv2C4VCpCwAAAAAAAAAGQlIXAAAAAAAAAAyE9gsAAAAAAACAI6P9guFQqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgAMz037BcKjUBQAAAAAAAAADIakLAAAAAAAAAAZC+wUAAAAAAADAgdF+wXio1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwIHRfsF4qNQFAAAAAAAAAAMhqQsAAAAAAAAABkL7BQAAAAAAAMCRmU32jgA2IqkLALhn55tXtncIBUbh99baOwQAAHCPinn62DuEAiX2Rry9QwCAfIekLgAAAAAAAODA2CjNeOipCwAAAAAAAAAGQlIXAAAAAAAAAAyE9gsAAAAAAACAAzOnsFGa0VCpCwAAAAAAAAAGQlIXAAAAAAAAAAyE9gsAAAAAAACAAzOn2DsC2IpKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHJjZbLJ3CLARlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgwc4q9I4CtqNQFAAAAAAAAAAMhqQsAAAAAAAAABkL7BQAAAAAAAMCBmVNM9g4BNqJSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAB2Y22zsC2IpKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHJg5xWTvEGAjKnUBAAAAAAAAwEBI6gIAAAAAAACAgdB+AQAAAAAAAHBgtF8wHip1AQAAAAAAAMBAqNQFAAAAAAAAHJjZbO8IYCsqdQEAAAAAAADAQEjqAgAAAAAAAICB0H4BAAAAAAAAcGBslGY8VOoCAAAAAAAAgIGQ1AUAAAAAAAAAA6H9AgAAAAAAAODAzGbaLxgNlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgwc4q9I4CtqNQFAAAAAAAAAAMhqQsAAAAAAAAABkL7BQAAAAAAAMCBpZhN9g4BNqJSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAB2am/YLhUKkLAAAAAAAAAAZCUhcAAAAAAAAADIT2CwAAAAAAAIADM6fQfsFoqNQFAAAAAAAAAAMhqQsAAAAAAAAABkL7BQAAAAAAAMCBmc32jgC2olIXAAAAAAAAAAyEpC4AAAAAAAAAGAjtFwAAAAAAAAAHZk4x2TsE2IhKXQAAAAAAAAAwECp1AQAAAAAAAAeWYqZS12io1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwIGZab9gOFTqAgAAAAAAAICBkNQFAAAAAAAAAAOh/QIAAAAAAADgwMxme0cAW1GpCwAAAAAAAAAGQlIXhnL8+HG9++67euyxx+Tr6ytXV1eVLFlStWrVUocOHTRhwgTt2rVLycnJ9g41jVGjRslkMikgICBP1g8ICJDJZNKoUaNsmvfRRx/JZDLJZDIpNDQ0y7H+/v7WsevWrctybGBgYJ5eb3bu9n7kNzNnzrTe840bN1qfb9mypUwmkwoVKqSrV6/meL3Lly/L09NTJpNJ7dq1y4OIAQAAAADA/UBSF4YxadIk1ahRQ+PHj9eePXt06dIlJSUl6cKFCzpw4IB+/fVXvfPOO2rQoIH2799v73ANoWnTptbjzZs3Zzru8OHDio6OztHYq1evWu9/s2bNciFK3OmFF16QJF2/fl2LFy/O8byFCxcqISEhzRoAAAAAAKSYTfnugayR1IUhzJs3T4MHD9bNmzf1wAMP6LPPPtO+ffsUFRWlc+fOafv27frss8/UuHFje4dqKPXr15e7u7ukrBO1lnM5Gbtt2zZrpXTqpDFyT9euXeXt7S1JmjNnTo7nzZ49W5JUtGhRdejQIU9iAwAAAAAAeY+kLgxhxIgRkm5/rf7vv//W0KFDVadOHfn7+6tUqVJq2LChhg4dqi1btujgwYMqX768nSNOa9SoUTKbzYqIiLB3KGl4eHgoMDBQkrRly5ZMx1mSuH379pUk7d69W4mJiVmOlajUzSuFChVS165dJUkbN27U6dOns51z4sQJbdu2TZL09NNPWxP0AAAAAADAeEjqIt87evSoTp48KUl6+eWX5evrm+X4mjVryt/f/36EViBYqmkjIyN14sSJDMdYEr49evRQpUqVlJiYqF27dmU5tkyZMqpcuXIeRAzpf+0TUlJSNHfu3GzHz549W+b/v50prRcAAAAAAKmZzaZ890DWSOoi34uJibEe+/j43PN6p06d0ltvvaWaNWvKx8dHXl5eqlKlil599VUdOXIkR2ts375dL774oqpWrSofHx95e3urevXq6tq1q37++Wddv349zfjsNko7e/asvv/+e3Xs2FEBAQHy8PCQl5eXKlasqN69e2eaQM0NqatpM2qrEBERodOnT8vV1VX169dXkyZNMh2bmJio3bt3S8q49YLZbNbPP/+s4OBglSpVSm5ubipRooRatmypH374QUlJSZnGeefmZ/Pnz1erVq1UqlQpOTs7q0+fPjm+5qioKNWpU0cmk0nFihXTjh070o1Zvny5unXrpgceeEAeHh7y9fVVgwYNNGHChHTvr0VERESajc0SEhI0fvx4BQYGytfXVyaTSTNnzsxxnFkJCgrSgw8+KClnLRh++uknSVKVKlXUoEGDXIkBAAAAAADYh4u9AwCy4+fnZz1ev3693njjjbtea/HixerVq5d1syiLY8eO6dixY5o2bZomTpyoAQMGZDg/ISFBr776qmbNmpXuXFhYmMLCwrR06VItW7ZMnTp1ynFcNWvW1KVLl9I9f+LECZ04cUI//fSTPv74Y/33v//N8Zo51ahRI7m4uCgpKUmbN29OV8VpSd7WrVtXXl5eatKkiWbOnJlhUnfXrl3Wtgx3tl64cuWKOnfurA0bNqR5PiYmRhs2bNCGDRv03Xff6bffflPp0qUzjddsNuv555/PUXVqRo4fP65WrVopPDxcDzzwgNauXauHHnrIev7y5cvq0aOH1q1bl2aepTp5165dmjp1qtasWaOKFStm+jpxcXF67LHHdODAgbuKMzsmk0m9evXSmDFjFBoaqn379qlu3boZjt2+fbuOHTsmiSpdAAAAAAAKAip1ke9Vq1ZN5cqVkyStWLFC/fv31+HDh21eZ/v27Xr66aeVkJCgMmXKaMaMGYqMjNT58+e1ePFiValSRcnJyRo4cKCWLl2a4Rq9evWyJnSbN2+uFStWKDIyUrGxsTpw4ICmTJmiJk2ayGSy7WsClSpV0rBhw7RmzRodPHhQ0dHROnHihNatW6fu3bvLbDZrxIgRWrNmjc3XnR1vb2/Vrl1bUsbVt5bnLBW6ls3oduzYka6yNvX8Oyt1n376aWtCt1evXtqzZ49iY2P1zz//aNCgQTKZTNq/f7/at2+vW7duZRrvjz/+qLlz5+qFF17Qrl27FBMTo2PHjqlfv37ZXmtISIgaNWqk8PBw1ahRQ9u3b0+T0E1KSlK7du20bt06ubu7691339W+ffsUGxur06dPa+bMmSpXrpz+/fdftWvXLtOKXUkaNGiQ/v33X3344Yc6fPiwYmNjtW/fPj322GPZxplTqRO0lk3QMmI5Z0kEAwAAAACQmtmc/x7IGpW6yPdMJpMmTJigZ555RpI0depUTZ06VeXKlVNgYKDq1q2rJk2aqGHDhnJ1dc10nYEDByo5OVm+vr7atm1bmlYIXbt2VdOmTRUYGKiTJ09q4MCBat++fZr1Fi5cqMWLF0uSXnnlFU2ZMiVN8tbPz08PP/ywXn311SzbCGRk79696Z4rXry4AgIC9OSTT2r48OEaN26cxo4dqzZt2ti0dk40bdpUe/bs0bFjx3T+/HmVKlXKes7SI9eS1K1atapKliypqKgohYSEpElSWsaWKFFCNWrUsD6/fPlyrV69WpI0ZMgQffnll9Zzfn5+mjhxosqVK6d33nlH+/bt0/fff6+BAwdmGOuZM2f0zjvvaNy4cdbnihUrpkqVKmV5jevXr1eXLl0UHx+vhg0bauXKlWmqwCVp8uTJ2rp1q1xdXbV+/XprAtsS5wsvvKCWLVuqTp06Onz4sKZMmaKhQ4dmGudvv/2mtm3bplkjN1WuXFmNGjXS9u3b9fPPP+vzzz+Xi0vaf9YTExO1cOFCSbf/EJHfNhEEAAAAAAC2o1IXhvD0009r8eLFKlu2rPW5yMhILVu2TO+//76aNWumMmXK6IMPPtC1a9fSzd+3b5/2798vSRo+fHiGvW1LlCihjz/+WJJ07tw5rVy5Ms35r776SpL0wAMPaNKkSVlW496ZWLtXvXv3liRt27Yty+rQu5W6qjZ1tW1UVJSOHj0qk8mkxx9/3Pq85Tj12OTkZGtv2jurdKdNmybpdlLzk08+yTCGoUOHqlq1apJuJ+4z4+vrqw8//DBH12Uxf/58BQcHKz4+XsHBwVq/fn2GCdaJEydKur0hX+qEbmrlypWzJpyzagHRpk2bNAndvGKp1o2Ojs6wkvvXX3/VxYsX04wFAAAAAADGRlIXhtG1a1eFh4dryZIl6tu3r6pWrZomsRoTE6MxY8aofv36io6OTjPXUkEqSd27d8/0Nbp06WJNyKaeEx8fb90A7JlnnpGbm1uuXFNqe/fu1auvvqpatWqpSJEicnZ2tm66VbNmTUm3E6fHjx/P9ddu0qSJnJxu/3OQOlFrOa5Zs2aaJGhGm6WFhIQoPj5eUtqkrtls1rZt2yRJ7dq1k6enZ4YxODk5qVu3bpKkAwcOZNhjWJJatGghDw+PHF/bxIkT9eyzz+rmzZvq06ePfvnlF3l5eaUb9++//yoiIkKS1LJlS129ejXTx8MPPyxJ+vvvv3Xz5s0MXzc4ODjHMd6Lnj17Wu9HRi0YLJuoFSpUSF27dr0vMQEAAAAAjCXFbMp3D2SN9gswFDc3N3Xp0kVdunSRdHvzrR07dmjRokWaM2eObt68qUOHDql///5atmyZdd7JkyclSR4eHqpQoUKm63t6eqpixYo6evSoNcEnSREREUpOTpYkPfroo7l+Xe+//74++eQTmXPQNOby5cu5/vq+vr56+OGH9c8//2SY1LUkcS0sP2/dulVms1kmkynNvNSbpF25csVaKZq6JUNGLMlrs9msU6dOqWjRounGZLU52Z1mzpxpfe/vbNlwp7CwMOtxTpOfKSkpiouLS9Ou4m7ivBdFihRRx44dtWDBAv3666+6fPmyihQpIun2HzosbS+6du2qQoUK3dVrWN4/AAAAAACQP1CpC0MrXLiwWrdurWnTpmnr1q1yd3eXJP3yyy86ffq0dZylgtTb2zvbNX18fNLMkW4nJu88n1sWLFigjz/+WGazWU2aNNHcuXN16NAhRUdH68qVK4qPj9eBAwes423t15tTluragwcPWpN4d/bTtXj00Ufl7e2tixcvWmOzjC1atKgeeeQR69jU9zG7+5/63qael1pGVbaZiYuLsx4XL148y7F3myxPSEjI8Hlb4rxXlrYKCQkJ1v65kvTzzz9bN527l9YLfn5+2T4AAAAAAMD9Q1IXBUZgYKBeeukl688hISHWY0uy8OrVq9muYxmTOsFYuHBh63Fmyca79c0330iSGjVqpI0bN+rZZ59VjRo1VLx4cfn4+Mjb29uamMtLlqSu2WzW1q1bdenSJWvC9s6krrOzsxo2bCjpdjWvZY5lrKWVg5T2PmZ3/1Ofz43k+eDBg60b7GVXqZs64bx//36ZzeYcPTLqz3y/tWrVSqVLl5b0v3YL0v/aMZQvX17Nmze3S2wAAAAAgPzPbDbluweyRlIXBYrl6/uS0mwoZkm8JSQkKDw8PNP5CQkJ1p61qZN1AQEBcnZ2liT99ddfuRdwqvV69OiRJhmaWupK3bxy52ZpW7duVUpKigICAlSuXLl04y0biW3evFmHDh1SbGyspLStF6TbCXFfX19J0qFDh7KM4eDBg5Ikk8mk8uXL3/3F/H/Ozs6aM2eOnnvuOUm3N8nLbKO2SpUqWY9T/0HACJydna3XuHXrVp04cUJHjhzR3r17JUm9evXKcmO/7MTFxWX7AAAAAAAA9w9JXRQoqVsulClTxnqcutJ08eLFmc5ftmyZtb1B6jk+Pj5q0KCBJGn+/PmZbo51NxITEyXJ2rM3I6mrL/NKyZIlVa1aNUm3E7WZ9dO1sDy/ZcuWNP10UyeHpdsJWksC+LffftONGzcyXC8lJUVLliyRJD3yyCMZ9tO9G87Ozpo9e7Z69+4tSXrvvfc0ZsyYdONq1qxp/czMmDEjV177frK0VzCbzZozZ06aTdMs1363fH19s30AAAAAAID7h6Qu8r3jx49rxIgR1krQzJw6dUpTp06VdLs61JKElaQ6deqodu3akqRPP/00zSZoFrGxsRoxYoQkqXTp0mrXrl2a80OGDLG+zptvvpllLLb0vbVsqLVixYoMN0qbNWuW1q9fn+P17oUlIRsSEqI1a9ZIyjyp26BBA7m6uur8+fP68ccfJd1OftepUyfdWEtbjLi4OL333nsZrvfll1/qyJEjkqT+/fvf24XcwcnJSTNmzFCfPn0kSR988IFGjx6dZozJZNJbb70l6Xa169ixY7NcMzk5WceOHcvVOO/Fww8/bL33c+bM0dy5cyXdfp+qVq1qz9AAAAAAAPlcitmU7x55xWw26/Dhw5o1a5YGDBigwMBAubu7y2QyyWQyZZgzSi0iIsI6NruH5Ru0eYGkLvK9GzduaOzYsSpbtqx69uypWbNm6dChQ4qJiVFcXJz++usvjRs3TnXr1lVMTIwkaeTIkdZN0ywmT54sZ2dnXbx4UY0bN9bs2bN19uxZRUVFaenSpXr88cetv7iTJ0+Wq6trmvndunVTt27dJEnffvutnnjiCa1cuVJnz57VxYsXFRoaqmnTpikoKEi//fZbjq+vZ8+ekqRNmzbp2Wef1b59+xQbG6t//vlHb731ll588UXVqFHjbm+fTSxJ3aSkpEz76Vp4enpak4iWdgWNGjWytqlIrUOHDnrqqack3U7e9unTR/v27VNcXJwOHjyoN998U2+//bak2wn43E7qSrcTuz/++KP69esn6fZnZOTIkWnGDBo0SEFBQZKkESNGqH379lq5cqXOnDmjS5cu6eTJk1q7dq3effddVaxYUV999VWux3kvLNW6x44d06lTp9I8BwAAAAAApJMnT6pGjRrq06ePvv32W+3duzdXv5F9v7jYOwAgO+7u7nJzc1NiYqIWLlyohQsXZjrWxcVF7733nrXiMrVGjRrp559/Vu/evXXmzJkMk13Ozs6aOHGiunTpkuH6c+bMkbu7u+bOnas//vhDf/zxR4bjLFW9OfHOO+9o1apV2rNnj+bPn6/58+enOV+zZk1Nnz5d9evXz/Gad+vOfrglSpRQ9erVMx3fpEkT7dq1K9P5qf3888/q0qWLNmzYoFmzZmnWrFnpxtSuXVsrV65Ml1DPLU5OTpo2bZqcnZ01depUjR49WikpKfroo48kSa6urlqxYoX69eunxYsXa+XKlVq5cmWm6935hwN7e/bZZzVs2DDrxnru7u7WPxoAAAAAAJCZ9N8bdgxly5bVY489ppiYGG3ZssXm+atWrcq0GE6SvLy87iW8LFGpi3yvSpUqio6O1sKFCzVgwAA1atRI/v7+cnV1lZubm/z9/dW4cWONGDFCoaGhGjVqVKZrde/eXWFhYRoyZIgeeughFSpUSJ6enqpcubL69++vAwcOaMCAAZnO9/Dw0E8//aSNGzfq+eefV0BAgDw8POTj46Nq1aqpW7dumj9/vlq3bp3j6/Py8tLGjRs1cuRIVa9eXe7u7ipSpIhq166tjz/+WLt375a/v78tt+yuPfDAA2k2iLP0ws3Mnf9w3dlPN7UiRYpo/fr1mjdvnp566inre1isWDE1b95c3333nXbv3q3SpUvf0zVkx2Qy6fvvv9crr7wiSRozZkyalhA+Pj5atGiRtmzZon79+qlq1ary9vaWi4uLihUrpvr16+udd97Rjh079Nlnn+VprLYqXry42rZta/25ffv29LsFAAAAACCVYsWK6ZdfftG5c+cUGRmppUuXqkWLFne1lqenp7y9vTN9ODnlXerVZM6oiScAADaIaZ15lTZsU+rP/NOrGQAA3J1inj72DqFAib0Rb+8QgHSSbp6xdwi5ameZjL+xbE8Nzi69b681atQoffjhh5KkEydOpCl4u1NERIQqVKggSfrzzz+tbRzvN9ovAAAAAAAAAA4sLzcmQ96g/QIAAAAAAAAA3CV7bLRGUhcAAAAAAAAAbDRw4ED5+PjI3d1d7u7uqlmzpgYPHqxjx/K+rR7tFwAAAAAAAAAHZs6H7RcuXryY7Rh7bw5+6NAh6/HNmzcVGhqq0NBQfffdd/rss8/0xhtv5Nlrk9QFAAAAAAAAkK/4+fllO8ZsNt+HSNJycnLSk08+qaefflr16tVTuXLlVKhQIUVERGjZsmUaO3asrly5okGDBsnb21t9+/bNkzhI6gIAAAAAAABADpQvX17r1q1L93y1atU0fPhwderUSY0bN1ZsbKyGDRumrl27qnDhwrkeBz11AQAAAAAAAAeWkg8fcXFx2T7yo+rVq+vDDz+UdPsaVq1alSevQ1IXAAAAAAAAQL7i6+ub7SO/6tSpk/U4JCQkT16DpC4AAAAAAAAA5BJ/f3/r8aVLl/LkNeipCwAAAAAAADgws0z2DqFAOX/+vPU4ryqKqdQFAAAAAAAAgFyydOlS63GdOnXy5DVI6gIAAAAAAABADkRGRmZ5/sCBAxo1apQkyc/PT0899VSexEH7BQAAAAAAAMCBpZjtHcH9FRoaqitXrlh/Tp2o3b9/f5r2CeXKlVO5cuWsPz/66KNq2rSpOnbsqDp16qh06dJycnJSRESEfvnlF33xxRe6du2aJOnLL79U4cKF8+QaTGaz2cHeNgBAbotp3czeIRQYpf48Zu8QAADAPSrm6WPvEAqU2Bvx9g4BSCfp5hl7h5CrNpbsbu8Q0gmKWpR3awcFadOmTTkaO3LkSGvlrSQVLVpUly9fznKOl5eXvvrqK7388sv3EmaWqNQFAAAAAAAAgByYMWOGtm7dql27dikyMlKxsbFKTExU0aJF9dBDD+mJJ57QSy+9pNKlS+dpHCR1AQAAAAAAAAeWIpO9Q7ivNm7ceNdzO3furM6dO+deMHeJjdIAAAAAAAAAwEBI6gIAAAAAAACAgdB+AQAAAAAAAHBgZgdrv1AQUKkLAAAAAAAAAAZCUhcAAAAAAAAADIT2CwAAAAAAAIADS7F3ALAZlboAAAAAAAAAYCBU6gIAAAAAAAAOjI3SjIdKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHBgbpRkPlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgw2i8YD5W6AAAAAAAAAGAgJHUBAAAAAAAAwEBovwAAAAAAAAA4MLNM9g4BNqJSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAB5ZC9wXDoVIXAAAAAAAAAAyEpC4AAAAAAAAAGAjtFwAAAAAAAAAHliL6LxgNlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgws70DgM2o1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwIGl2DsA2IxKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHFiKyWTvEGAjKnUBAAAAAAAAwECo1AUAAAAAAAAcmNneAcBmVOoCAAAAAAAAgIGQ1AUAAAAAAAAAA6H9AgAAAAAAAODAUuwdAGxGpS4AAAAAAAAAGAhJXQAAAAAAAAAwENovAAAAAAAAAA4sxWTvCGArKnUBAAAAAAAAwEBI6gIAAAAAAACAgdB+AQAAAAAAAHBgKaL/gtFQqQsAAAAAAAAABkJSFwAAAAAAAAAMhPYLAAAAAAAAgAMz2zsA2IxKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHFiKyd4RwFZU6gIAAAAAAACAgVCpCwC4Z2U2Hrd3CECGKhctY+8QCox9A6vaO4QCo8iYjfYOoUCp5lvO3iEUGGEXI+0dQoEReyPe3iEAAAo4kroAAAAAAACAA0uxdwCwGe0XAAAAAAAAAMBASOoCAAAAAAAAgIHQfgEAAAAAAABwYGZ7BwCbUakLAAAAAAAAAAZCpS4AAAAAAADgwFJM9o4AtqJSFwAAAAAAAAAMhKQuAAAAAAAAABgI7RcAAAAAAAAAB5Zi7wBgMyp1AQAAAAAAAMBASOoCAAAAAAAAgIHQfgEAAAAAAABwYLRfMB4qdQEAAAAAAADAQEjqAgAAAAAAAICB0H4BAAAAAAAAcGBmk70jgK2o1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwIGl2DsA2IxKXQAAAAAAAAAwEJK6AAAAAAAAAGAgtF8AAAAAAAAAHBjtF4yHSl0AAAAAAAAAMBCSugAAAAAAAABgILRfAAAAAAAAAByY2d4BwGZU6gIAAAAAAACAgZDUBQAAAAAAAAADof0CAAAAAAAA4MBSTPaOALaiUhcAAAAAAAAADISkLgAAAAAAAAAYCO0XAAAAAAAAAAeWYu8AYDMqdQEAAAAAAADAQKjUBQAAAAAAABwYlbrGQ6UuAAAAAAAAABgISV0AAAAAAAAAMBDaLwAAAAAAAAAOzGzvAGAzKnUBAAAAAAAAwEBI6gIAAAAAAACAgdB+AQAAAAAAAHBgKSZ7RwBbUakLAAAAAAAAAAZCUhcAAAAAAAAADIT2CwAAAAAAAIADS7F3ALAZlboAAAAAAAAAYCAkdQEAAAAAAADAQGi/AAAAAAAAADgws70DgM2o1AUAAAAAAAAAAyGpCwAAAAAAAAAGQvsFAAAAAAAAwIGl0IDBcKjUBQAAAAAAAOAQzGazDh8+rFmzZmnAgAEKDAyUu7u7TCaTTCaTIiIicrzW2rVr1bFjR5UpU0YeHh4qX768nnvuOe3atSvvLuD/o1IXAAAAAAAAgEM4efKkatSocc/rDB48WJMmTUrz3OnTpzVv3jwtWLBAn376qYYNG3bPr5MZKnUBAAAAAAAAB5aSDx/3Q9myZdW5c2c1adLEpnlffPGFNaEbHBys3bt3Kzo6Whs3blSDBg2UnJyst99+W0uXLs2LsCWR1AUAAAAAAADgIIoVK6ZffvlF586dU2RkpJYuXaoWLVrkeH5MTIxGjRolSWrevLlWrFihwMBAFS9eXM2aNdOGDRtUrVo1SdLQoUN18+bNvLgMkroAAAAAAAAAHIOPj486duyoUqVK3dX82bNnKz4+XpI0btw4OTmlTa96enpq9OjRkqSIiAitWrXq3gLOBEldAAAAAAAAwIGZ8+Ejv1qxYoUkqUKFCgoMDMxwTMeOHeXh4SFJWr58eZ7EQVIXAAAAAAAAAHIgJCREktSwYcNMx7i7u6t27dqSpH379uVJHCR1AQAAAAAAACAbZ86csbZeqFixYpZjLeePHj0qszn3a49dcn1FAAAAAAAAAIaRYu8AMnDx4sVsx/j6+t6HSP4nJibGelyyZMksx/r7+0uSEhMTdfXqVfn4+ORqLCR1AQAAAAAAAOQrfn5+2Y7JiwrYrFy7ds16bOmZmxlPT0/rMUldAAAAAAAAALkqxWTvCIwhdRLZZLLvTSOpCwAAAAAAACBfiYuLs3cI6Xh7e1uPb9y4keXY1OdTz8stJHUBAAAAAAAA5Cv3u19uThQvXtx6HBUVleXYCxcuSJLc3d3zJKnrlOsrIsdmzpwpk8mU7uHk5KQiRYrokUce0auvvqqQkBB7h5qhoKAgmUwm9enTx65rGM2lS5f0xRdfqGXLlipZsqTc3Nzk6+ur6tWrq2XLlnrvvfe0du3aNH1acPdGjRolk8mkgIAAe4eSpyz/fmT0uxQREWE9P2rUqPseGwAAAAAgf0uROd898qOyZctae+OGh4dnOfbEiROSpKpVq+ZJqwaSuvmQ2WzWlStXdPDgQX3//fcKDAzURx99ZO+wHNLGjRutybCIiIh7Xm/Tpk166KGHNHToUG3YsEEXLlzQrVu3dOnSJYWFhWnDhg365JNP1KZNG02ZMuXeLwAAAAAAAAC5pk6dOpKknTt3ZjomMTHRWqRZt27dPImDpG4+sWrVKsXHxys+Pl4XL15USEiIRo8eLQ8PD6WkpOj//u//tHTpUnuHiXvw77//qm3btjp//rwKFSqkIUOGaNu2bTp16pRiYmL0zz//6Mcff1SnTp3k7u5u73ABAAAAAABwhw4dOki6Xam7d+/eDMesWLFCCQkJkqSOHTvmSRz01M0nPD090/TXqF27tmrXrq2HHnpI3bt3lyRNmDBBXbp0sVeI6WzcuNHeIRjKmDFjdP36dbm4uOjPP/9UYGBgmvPFihXTI488on79+unChQuKjo62U6QFy6hRo2g5AAAAAABAFvJns4P8qXfv3ho1apTi4+M1fPhwrVu3Tk5O/6ubTUhI0MiRIyVJAQEBatu2bZ7EQVI3n+vWrZuqVKmif//9V3v27NHNmzfl5uZm77BwF37//XdJUvPmzdMldO/k7+8vf3//+xEWAAAAAACAQwkNDdWVK1esP0dGRlqP9+/fr/Pnz1t/LleunMqVK2f9uXjx4ho1apSGDh2qP/74Qx07dtTIkSMVEBCg0NBQDR8+XIcPH5Ykff7553mWx6P9ggE89NBDkqTk5GTFxcVlOm7jxo3q1auXKlSoIE9PTxUuXFiPPvqo/u///k8XL17MdJ7ZbNbChQvVrl07lS1bVm5ubvLx8VHFihXVrFkzjRo1SocOHUo3LyebnJ05c0avv/66AgIC5OHhoTJlyqhr167atm1bjq8/OTlZs2fPVnBwsEqXLi03NzcVK1ZMQUFB+uGHH5SUlJTp/UjdD/f69ev6+OOPVatWLXl7e6tw4cJq2LChpk+fLrM5/d+kTCaTmjdvbv25QoUK6Ta1s6XPbkxMjCRZG2rfjT59+shkMikoKCjLcVm9N3eusW3bNnXt2lVlypSRh4eHAgIC9Prrr6f5By0zCQkJmjx5slq2bCl/f3+5ubnJ399fTz31lBYsWJDhfZXSbhIo3f7H880331S1atVUqFAh671t1KiRTCaTmjVrlm0sH3/8sUwmk9zd3RUbG2t9PruN0q5fv67PP/9cTZo0UbFixeTq6io/Pz9Vq1ZN7dq108SJE607VmZk9erV6tatm8qWLSt3d3f5+fmpUaNG+uyzz3T9+vVM5935Hq1du1adOnVS2bJl5eLiku17DAAAAAAA7s7rr7+uhg0bWh8//vij9VyXLl3SnJs2bVq6+W+99ZbeeOMNSdLKlSsVGBioEiVKqFmzZtqxY4ecnJzy/Bv3VOoaQEpKivW4SJEi6c4nJibq5Zdf1pw5c9I8n5CQoL///lt///23fvjhB61cuVL16tVLt3a3bt20bNmyNM/funVLV69e1YkTJ7R582adP39e3333nU1x79y5U23atNHly5etz507d05Lly7V8uXLc7QRWGRkpDp27GhtLm0RFxenTZs2adOmTZo+fbpWrlyp4sWLZ7rO+fPnFRwcrNDQ0HQx7ty5U7t377b5+mzl5+enqKgo7dy5U1evXk3TbsNepk6dqtdee03JycnW506ePKkpU6Zo7ty5Wr16tRo1apTh3EOHDql9+/bW3RwtoqOjtWbNGq1Zs0Zz587V/Pnz5eXllWkMu3btUtu2bTP8g0Xv3r21Y8cObdmyRREREZkmZiXpp59+kiS1bdtWxYoVy+qyrc6fP6+goCCFhYWlef7ixYu6ePGijh49qt9++00lS5bU008/nWbMzZs31bdvX82bNy/d8zt27NCOHTv0zTffaPXq1apevXqWcYwYMUJjx47NUcwAAAAAAOS2lOyH4A6TJk1ScHCwvv32W+3evVtxcXHy9/dXkyZNNHjwYNWvXz9PX59KXQM4cuSIJKlSpUry9PRMd/6FF17QnDlz5OTkpFdeeUXbt29XdHS0zp07p8WLF6tGjRqKiopScHBwmvJxSZoxY4Y1odu9e3dt3LhRp0+f1oULFxQSEqJFixapZ8+eWSblMhIdHa327dvr8uXL8vLy0vjx4xUeHq4LFy5o9erVeuSRRzRw4EAdO3Ys0zXi4+PVokULhYSEqEiRIvrkk0904MABxcXFKTw8XF9//bWKFi2qXbt2qUePHmmS33d6/vnndf78eU2cOFHHjh1TbGystm7dak1Yfv/991q/fn2611+1apX150OHDlk3s7M8HnzwwRzfk5YtW0qSzp49q+DgYG3atCnLmPPasWPHNHDgQNWqVUurV6/WhQsXFB4ers8++0yFChXSlStX1L59e0VFRaWbGxkZqaCgIJ04cUKlS5fW119/rbCwMMXFxSksLExjxoyRh4eHfv31V7322mtZxtG1a1d5eXlp+vTpOnXqlC5cuKDff/9dvr6+6tmzp9zc3GQ2mzV37txM19i7d6/196RXr145vgdvv/22wsLC5OzsrPfee08hISGKiorS6dOntWPHDn3//fcK+n/s3XV4FMnWBvBTcRISSIIGd3dZfLm4LO5ui7vL4u4WWNyd4O4WYBfP4hLcQxKCBAnJnO+PfF3bPRJhIcnMvL/75LnZ6Z5JddE9M/129any5cnW1tbgub1795aBbvXq1enUqVMUGBhId+7coVGjRpGDgwM9evSIqlSpQiEhISbbcOTIEZo0aZLcJ968eUOPHz+mP/74I8bbAQAAAAAAAAAxd+LECWLmGP1ENU9P1apVaefOnfTy5Uv6+vUrPX36lNavX//TA10ijNRN8Hx8fGTw2aNHD4PlO3bsoE2bNhER0YYNG6hx48aa5Q0aNKDKlStT8eLF6c6dOzRhwgTy9vaWy5XQsnDhwrRp0yZ5OzwRUfLkyalQoULUsGHDWLd73LhxstzAtm3bqGrVqnJZtWrVqHTp0lSiRAmDkbNqI0aMoHv37pG7uzudPXtWM9rR3d2devToQeXKlaPixYvT8ePHafv27dSgQQOjr/Xq1Ss6f/485c6dWz5WunRpOnDgAGXLlo1ev35Ny5Yto0qVKsnliRMn1oTozs7O/2l07ahRo2jPnj30/v17OnXqFJUvX56SJElCxYoVoyJFilCpUqXo119/NToa+2d4/vw55c2bl06dOiW3K3ny5NS/f38qUKAAValShYKDg2n06NEGo6p79OhBgYGBlClTJvrrr78oZcqUcpm7uzv98ccfVLRoUapWrRqtXr2aevXqRUWKFDHaji9fvtCVK1coXbp08jH1v0PNmjVp+/bttGbNGpNBpzJK3d3dnX777bcY94Gy//fq1YvGjx+vWZY2bVoqUaIEderUyeB5//zzjxzZXb9+fdqyZYs8djw9PWn06NGUJ08eaty4MT19+pTGjx9P06dPN9qG58+fU5MmTWjDhg2a4y99+vQx3g4AAAAAAAAAsC4YqZtAfP78mT5+/EgfP36kd+/ekZ+fH40bN45at25NRERNmzaVtTrUZs+eTUSRt5zrB7oKNzc3GjZsGBERrV+/XlPnVKlHmypVKk2g9F8oNXCJiGrVqqUJdBWurq40efJkk68RGhoqa5YMHTrU5O3r+fPnp+bNmxMRRTmSs2fPnppAV92ORo0aERHR+fPnTT7/R8iePTudPn1aM0nau3fv6MiRIzRlyhSqU6cOpUyZklq3bk2PHz/+qW1RTJkyxWhQXalSJapXrx4RRZY1CAsLk8sePnxIu3btks9XB7pqVatWlTWJo/q3GThwoCbQ1accA3fu3KGLFy8aLA8PD6eNGzcSEcmRvTGl7P+pU6eO8XOISO6bdnZ25O3tbfTYadSokQynly9fbnJUtq2tLc2cOfOHHX8AAAAAAAAAsaUjTnA/EDWEuglEjRo1yNXVlVxdXSlp0qRUqFAhGjlyJEVERNC6detow4YNBreAf/r0ic6ePUtERJUrV5ahsLEfJdBUShcoChUqREREBw4coFmzZtHHjx//87Zcu3ZN1tGNqiB09erVTZZ1OHv2LIWGhhIRUYUKFaLctnz58hER0YULF6L8W6YoE9Hpl6b4GfLly0fnz5+n06dPU79+/aho0aKaEPLr16+0Zs0aKliwoPy3/VlcXFyMBu4KZdTzx48fyc/PTz5+5MgRYmYSQlC5cuWi/LcpUKAAEUX9b1OzZs0o21mjRg3y8PAgIjKoG01EdOjQITmRWWxKLxD9u/9PmzaNdu/eraktHBVfX18iIipVqhR5eXmZXK9JkyZEFFmj9/r160bXKViwYJSvkRAoNYaj+gEAAAAAAACAuINQN4H79u0bDR48mO7du2ew7MGDB/Tt2zciIurbt68MhY39qEeHvnnzRv7et29fypAhA+l0OurXrx8lS5aMypcvT0OGDKH9+/fTly9fYt3mR48eyd+VwNQYOzs7ypYtm9Fl6omrihYtGuW29evXz2C79EUVminB8qdPn0yu86OVLl2aZsyYQRcuXKAPHz7Q33//TcOHD5eTvYWEhFCjRo3o8+fPP60N2bJlM1orVqEe2az+N1X+bZiZUqVKFeW/jTKSPKp/m8yZM0fZTgcHBxmObtiwQY6uVShBb5YsWUxO6mbK1KlTydHRkd68eUO1a9em5MmTU506dWjSpEl07tw5zah2NWUktbHR32p58uSRv6v7UC267U8IPDw8ov0BAAAAAAAAgLiDUDeBOH78uCzA/PHjR7p48SI1a9aMiCInpapXr55BwKqMho0t9eskSZKELly4QL179yZPT0/6+vUrnTx5kqZMmUI1atSgVKlS0fDhw+nr168xfn31aN/oatCaWv492xZVG+3sEm75aAcHB/rll19o3LhxdOvWLRl0v3jxgrZu3frT/m5s/m0+fPggf/+ef5uoLg7EZBI+pQTDmzdv6ODBg5p27dy5k4hiP0qXiKh48eJ04cIFatiwITk6OtLbt29p165dNGzYMCpRogRlyZJFlhJRU/ojuj50dXU1eI6+2E5CCAAAAAAAAPCjcQL8gagh1E2AXFxcqEiRIrR+/Xr6/fffiYjoxo0bBhMtqQOl7du3x3jWvvLly2teJ3ny5DR79mwKCAggPz8/WrhwITVt2pSSJElC7969owkTJkRZRkGful3RlXMwtVz9Gm/fvo3xtpm7ZMmS0cSJE+V/X7p0SbM8pnVX9UezGhObfxt1OKn82yRJkiTG/y6mRqnGVIkSJWTYvXbtWvn41q1b5Wjmli1bftdr58uXj3x8fCgkJERe0KhatSrZ2dnRw4cPqU2bNjRt2jTNc5T++N4+NDfBwcHR/gAAAAAAAABA3EGom8DNnj1blg6YNm2aJjzJmDEj2dhE/hNevnz5P/8tGxsbKlCgAHXu3Jk2bNhAz58/l2Huvn376Ny5czF6nYwZM8rfb926ZXK98PBwo2UliCJvpVf8iG0zJ+pb9vVLQiRKlIiIKNqyDM+fP4/279y7dy/KGrI3b96Uv6v/TZV/m3fv3mnqM/9sSmi7c+dOev/+PRH9W3qhdOnSmn3mezg5OVG5cuVo0KBBdODAAbp//74MkseNGydLnRD92x83btyI8jXVdXTVfWhu3N3do/0BAAAAAAAAgLiDUDeBc3FxodGjRxMR0fv372nWrFlyWZIkSeiXX34hosjRi+rQ6Uf97eHDh8v/jiqgVcuXLx8lSZKEiIi2bdtmcr39+/ebrGNbrlw5cnR0JCKi5cuXx7TJP5y9vb38PaaTaP1XT58+lb/r1wJOnTo1EUUGsjqdzujzb9++HaORsaGhoZpSBvqU0g+JEyemggULyserVKkif4/Lf5tWrVqREII+f/5MW7dupWfPntGJEyfksh8tffr01LVrVyKKLJ2gDsrLli1LRJET+r148cLka/j4+BBRZCiaN2/eH95GAAAAAAAAgB9BlwB/IGoIdc1A27ZtKVOmTERE5O3tralp2r9/fyIievjwIfXq1ctk0KdQT0BGFH1Q6+/vL3/39PSMUXttbW1lDdTdu3cbDQ4/fvxIQ4YMMfkabm5u1LFjRyIiWr9+Pa1fvz7Kv/nlyxc5edWPpExcRkRRhncx0aNHj2j7++vXrzR+/Hj53+oAlYhkiP/27VvasWOHwfO/fftGvXr1inGbhgwZQqGhoQaPHz16lLZv305EkSNkHRwc5LLs2bPTb7/9RkRE06dPl8GqKe/fv6eXL1/GuE2mZMqUiUqXLk1EkSN0161bRzqdjhwdHalx48axfr3Q0FB68uRJlOso+78QQjMatUOHDkQUGfT36tXLaOmPbdu20aFDh+T6yqh6AAAAAAAAAID/CimDGbC3t5cjZt+9e0dz5syRyxo0aEAtWrQgIqKFCxdSuXLlyMfHhx4/fkwhISH07NkzOn78OI0ZM4Zy5colQ2BFjRo1qFixYjR16lQ6c+YMvXz5koKDg+n27ds0Z84cGaymTJmSKlasGOM2jxgxQgaiDRo0oOnTp9OjR48oMDCQDhw4QOXKlSN/f39KkyaNydeYMGEC5cqVi5iZWrZsSa1ataKjR4/Sq1ev6O3bt/TgwQPavXs39ezZk9KnTy9HRf5IWbNmpaRJkxJRZPmLBw8eUFhYGIWHh8eobq3axo0bKU+ePPTrr7/S3Llz6fz58/Ty5UsKCQmhe/fu0cqVK6lYsWLk6+tLRES1atWikiVLal6jYsWKMuDv0KEDrVy5kl69ekUBAQG0f/9++t///ke+vr5R9qsiTZo0dPv2bSpXrhwdOHCAAgMD6fHjxzRz5kyqW7cuMTN5eHjIkeJqCxYsoJQpU9LXr1+pSpUq1LNnTzpz5gwFBARQcHAw3b17l7Zs2ULt27entGnT0pkzZ2LVV6YoI3JPnjxJf/75JxER/fbbb991+/+bN28oc+bM9Ntvv9GSJUvIz8+P3rx5QwEBAXTx4kXq27cvLViwgIiIatasKUefExEVKFCAunTpQkSRI5pr1apFZ86coeDgYLp37x6NHTuWmjdvTkRE6dKloz/++OM/bTcAAAAAAAAAgJpdfDcAYqZ169Y0adIk8vf3p9mzZ1Pfvn3lxEsrVqwgd3d3mj9/Pp05cybKAC137tya/2ZmunjxIl28eNHkczw9PWnr1q3k7Owc4/YmT56cdu/eTdWqVaN3797RwIEDaeDAgXK5jY0NLViwgNavX2+y/qubmxsdP36cmjRpQidPnqS1a9dqJsnSp5Rr+JFsbW2pd+/eNGbMGNq9ezft3r1bs/zhw4cxrpWaJEkSCgoKolOnTtGpU6eiXLdOnTq0bt06o+1ZuXIlVatWjUJCQqhdu3aa5U5OTrRmzRqaN29etHV1s2bNSiNGjKBu3bpR9erVDZa7ubnR7t27KWXKlAbL0qZNS76+vtSgQQO6du0azZs3j+bNm2fyb/2of5vGjRtTr1696OvXr3KU7X8pvRAREUF79+6lvXv3mlynYMGCtGTJEoPH58yZQ+/fv6f169ebfI2MGTPS/v375YUBAAAAAAAAgIRIR+Y/+by1wUhdM2FnZ0cjR44koshb79UBmr29PXl7e5Ofnx91796d8ubNS25ubmRra0tJkyalQoUKUY8ePejo0aO0adMmzesePHiQvL29qX79+pQ7d27y8PAgOzs7cnd3p5IlS9K4cePozp078rb32ChRogTduHGDunbtShkyZCAHBwdKlSoV1a1bl06cOEGdOnWK9jVSpkxJJ06coD179lCzZs0oY8aMlChRIrK3t6cUKVJQmTJlaPTo0fTPP/9Qz549Y93GmBg1ahQtWrSISpcuTUmTJv3u2+jv3LlDR44coWHDhlGlSpUoffr05OTkJPu7YMGC1LlzZzp58iTt2LGDXFxcjL5OuXLl6Pz589S0aVNKmTIl2dvbU5o0aahly5Z04cIFatiwYYzb1LlzZzp+/DjVrVuXUqVKRQ4ODpQhQwbq0qUL3bhxg0qVKmXyudmyZaMrV67QunXrqF69epQ2bVpydHQkBwcH8vLyoooVK9LUqVPJ39+fatWqFev+MiZp0qSa1/L09KQaNWp812ulT5+ezpw5Q+PGjaNKlSpR1qxZKXHixGRvb0+pU6ematWq0dKlS+n8+fOUKlUqg+c7ODjQunXraN++fVS/fn3y8vIie3t7Spo0KZUsWZKmTp1KN27coJw5c3739gIAAAAAAAAAGCPYWDFIALBYbdu2pVWrVtGvv/4abT1cgJhycEwb302wGDp8LP9QWZN6Rb8SxMilHtnjuwkWI8n4E/HdBIuSwx2fQT/KnbfP4rsJAABmIzws6rtjzU2/jE3juwkGZj7aGN9NSNBQfgEAAAAAAAAAAMCKYWiJ+UH5BQAAAAAAAAAAAAAzgpG6AAAAAAAAAAAAVkwX3w2AWMNIXQAAAAAAAAAAAAAzglAXAAAAAAAAAAAAwIwg1AWwMitXriRmphMnTsR3UwAAAAAAAAAgAeAE+D+IGkJdAAAAAAAAAAAAADOCUBcAAAAAAAAAAADAjNjFdwMAAAAAAAAAAAAg/ujiuwEQaxipCwAAAAAAAAAAAGBGEOoCAAAAAAAAAAAAmBGUXwAAAAAAAAAAALBiOuL4bgLEEkbqAgAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgTlFwAAAAAAAAAAAKwYii+YH4zUBQAAAAAAAAAAADAjCHUBAAAAAAAAAAAAzAjKLwAAAAAAAAAAAFgxHQowmB2M1AUAAAAAAAAAAAAwIwh1AQAAAAAAAAAAAMwIyi8AAAAAAAAAAABYMV18NwBiDSN1AQAAAAAAAAAAAMwIQl0AAAAAAAAAAAAAM4LyCwAAAAAAAAAAAFaMieO7CRBLGKkLAAAAAAAAAAAAYEYQ6gIAAAAAAAAAAACYEZRfAAAAAAAAAAAAsGK6+G4AxBpG6gIAAAAAAAAAAACYEYzUBQAAAAAAAAAAsGKYKM38YKQuAAAAAAAAAAAAgBlBqAsAAAAAAAAAAABgRlB+AQAAAAAAAAAAwIphojTzg5G6AAAAAAAAAAAAAGYEoS4AAAAAAAAAAACAGUH5BQAAAAAAAAAAACumY47vJkAsYaQuAAAAAAAAAAAAgBlBqAsAAAAAAAAAAABgRlB+AQAAAAAAAAAAwIqh+IL5wUhdAAAAAAAAAAAAADOCUBcAAAAAAAAAAADAjKD8AgAAAAAAAAAAgBXToQCD2cFIXQAAAAAAAAAAAAAzglAXAAAAAAAAAAAAwIyg/AIAAAAAAAAAAIAVY5RfMDsYqQsAAAAAAAAAAABgRhDqAgAAAAAAAAAAAJgRlF8AAAAAAAAAAACwYrr4bgDEGkbqAgAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgTlFwAAAAAAAAAAAKyYjji+mwCxhJG6AAAAAAAAAAAAAGYEoS4AAAAAAAAAAACAGUH5BQAAAAAAAAAAACvGKL9gdjBSFwAAAAAAAAAAAMCMYKQuAAAAAAAAAACAFdPFdwMg1jBSFwAAAAAAAAAAAMCMINQFAAAAAAAAAAAAMCMovwAAAAAAAAAAAGDFmDFRmrnBSF0AAAAAAAAAAAAAM4JQFwAAAAAAAAAAAMCMoPwCAAAAAAAAAACAFdMRyi+YG4zUBQAAAAAAAAAAADAjCHUBAAAAAAAAAAAAzAjKLwAAAAAAAAAAAFgxXXw3AGINI3UBAAAAAAAAAAAAzAhG6gIAwH+mYxTVh4TJP+RFfDfBYiQdj778UWyEiO8mWJQ7b5/FdxMADHx+4RvfTbAoibzKxncTAAASHIS6AAAAAAAAAAAAVowJA3XMDcovAAAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgTlFwAAAAAAAAAAAKyYDuUXzA5G6gIAAAAAAAAAAACYEYS6AAAAAAAAAAAAAGYE5RcAAAAAAAAAAACsGDPKL5gbjNQFAAAAAAAAAAAAMCMIdQEAAAAAAAAAAADMCMovAAAAAAAAAAAAWDFdfDcAYg0jdQEAAAAAAAAAAADMCEJdAAAAAAAAAAAAADOC8gsAAAAAAAAAAABWjInjuwkQSxipCwAAAAAAAAAAAGBGMFIXAAAAAAAAAADAiukwUtfsYKQuAAAAAAAAAAAAgBlBqAsAAAAAAAAAAABgRlB+AQAAAAAAAAAAwIoxo/yCucFIXQAAAAAAAAAAAAAzglAXAAAAAAAAAAAALN6jR49ICBGjn4sXL8Z3c6OE8gsAAAAAAAAAAABWTEcov2BuEOoCAAAAAAAAAACAVdm3bx+VLVvW5HJnZ+c4bE3sIdQFAAAAAAAAAAAAq5IoUSJKnDhxfDfjuyHUBQAAAAAAAAAAsGKM8gtmBxOlAQAAAAAAAAAAAJgRhLoAAAAAAAAAAABglcLCwuK7Cd8FoS4AAAAAAAAAAIAV0zEnuJ+frUePHuTq6kqOjo7k6OhIefLkod69e5O/v/9P/9s/AmrqAgAAAAAAAAAAQILy9u3baNdxd3f/7te/ceOG/D0sLIxu3rxJN2/epIULF9L06dOpZ8+e3/3acQGhLgAAAAAAAAAAACQoHh4e0a7DsRzRa2NjQ5UrV6amTZtS0aJFKW3atOTi4kKPHj2i7du306RJk+j9+/fUq1cvSpw4MbVr1+57m//TCY7t1gMAAOixc0gT300AgJ9MxHcDLIgQ6M0fKS5uzwSIrc8vfOO7CRYlkVfZ+G4CgIHwsOfx3YQfqmyaivHdBAOnXxyLdp0fHWvevn2bypQpQ0FBQeTh4UEPHz4kNze3H/o3fhTU1AUAAAAAAAAAAIAEJTg4ONqfHy1nzpw0ZswY+ff37dv3w//Gj4JQFwAAAAAAAAAAABIUd3f3aH9+hrp168rfL1++/FP+xo+AmroAAAAAAAAAAABWTEcoZ6RIkSKF/D0kJCT+GhINjNQFAAAAAAAAAAAAIKJXr17J33/WaOAfAaEuAAAAAAAAAAAAABFt27ZN/l64cOF4bEnUUH4BAAAAAAAAAADAillL+YVnz55R2rRpTS6/du0ajR49moiIPDw8qHr16nHUsthDqAsAAAAAAAAAAAAWr2DBglSuXDmqU6cOFS5cmFKnTk02Njb06NEj2rFjB82cOZNCQ0OJiGjWrFnk5uYWzy02DaEuAAAAAAAAAAAAWLzw8HDavn07bd++3eQ6zs7ONHv2bGrdunUctiz2EOoCAAAAAAAAAABYMWbrKL+wYsUKOn36NJ07d46ePXtGQUFB9PXrV0qaNCnlypWLKlWqRL///julTp06vpsaLYS6AAAAAAAAAAAAYPHq1atH9erVi+9m/BAIdQEAAAAAAAAAAKyYtUyUZkls4rsBAAAAAAAAAAAAABBzCHUBAAAAAAAAAAAAzAjKLwAAAAAAAAAAAFgxRvkFs4ORugAAAAAAAAAAAABmBKEuAAAAAAAAAAAAgBlB+QUAAAAAAAAAAAArxozyC+YGI3UBAAAAAAAAAAAAzAhCXQAAAAAAAAAAAAAzgvILAAAAAAAAAAAAVkxHKL9gbjBSFwAAAAAAAAAAAMCMINQFAAAAAAAAAAAAMCMovwAAAAAAAAAAAGDFmFF+wdxgpC4AAAAAAAAAAACAGUGoCwAAAAAAAAAAAGBGUH4BAAAAAAAAAADAiukI5RfMDUbqAgAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgTlFwAAAAAAAAAAAKwYo/yC2cFIXQAAAAAAAAAAAAAzglA3AVu5ciUJIQx+bGxsKGnSpFS4cGHq168f+fv7G33+6NGjSQhBGTNmjNuGx6FHjx7Jfjlx4kR8N+c/u3//Pg0ePJiKFy9O7u7uZG9vTylTpqT8+fNT7dq1adq0aXTu3DmKiIiI76b+cG3btiUhBJUvX/6nvL6yn6xcuTLO//aPoLS/bdu2BsvUx8Ho0aMNlp84cSLK7QcAAAAAAAAA84LyC2aImendu3d05coVunLlCv3555+0YMECateuXXw3Df6DuXPn0sCBAyksLEzzeEBAAAUEBNC1a9do9+7dRER04cIFKlq0aHw0E2Lo0aNHlClTJiIiOn78eIIOjAEAAAAAAMC66RjlF8wNRuqaiX379tGHDx/ow4cP9O7dO7pz5w6NHz+eHB0d6evXr9SxY0c6e/ZsfDcTvtP69eupd+/eFBYWRunSpaPp06fTpUuX6PXr1/Ty5Us6e/YsTZ8+ncqUKRPfTQUAAAAAAAAAgHiGkbpmIlGiRJQ4cWL5325ubvTHH39Q6tSpqUOHDhQREUETJ06kPXv2xGMr417GjBmJLeBq0rBhw4gocnsuX75M7u7umuWpUqWikiVLUv/+/enGjRuUPHny+GjmT7Vy5cp4Kw0Qn38bAAAAAAAAACC2MFLXzLVr107WzD1+/LhF1lq1dHfv3qXHjx8TEVHHjh0NAl19efLkoRQpUsRF0wAAAAAAAADACnAC/B9EDaGumRNCUO7cuYmI6NOnTxQcHBzj57548YIWLVpEderUoYwZM5KTkxM5OztT5syZqXXr1nTu3Llo/7Z64qU1a9ZQuXLlyMPDgxIlSkS5c+emkSNH0sePH40+X3+Ss/DwcPL29qbixYtTkiRJyMXFhQoVKkQzZ86kb9++xeg19GXMmFEzedSePXuoWrVqlCJFCnJycqIsWbJQ37596c2bN9H215o1a6hs2bKUNGlScnV1pQIFCtDkyZPpy5cvmomoHj16FO1rqQUGBsrfXV1dY/VctfLly2sm0tq7dy9Vq1aNUqZMSYkSJaLs2bPToEGD6O3bt9G+1rt372jSpElUqlQpSpYsGTk6OpKXlxfVr1+fDh06FKP27N+/n1q0aEGZMmUiZ2dnSpIkCeXJk4datmxJO3fuNPg3jW6ysvv379Ps2bOpatWqlCZNGnJwcKDEiRNTzpw5qUuXLnTr1q0YtcuY6P52cHAwjR49mooXL05JkyYle3t7Sp48OeXOnZsaNmxIixcvpg8fPsj1M2bMKOvpEhH973//M5jw0BIm9gMAAAAAAACA+IHyCxbAzu7ff8bYlCLIkycPhYSEGDz+8OFDevjwIa1du5YmTJhAQ4cOjfJ1IiIiqHHjxuTj46N5/NatWzRu3Djau3cv+fr6krOzs8nXCA0NpQoVKpCvr6/mcT8/P/Lz86MjR47Qnj17yMbm+69D9O/fn2bOnKl57MGDBzR79mzasWMHnT17llKnTm10+5o3b06bN2/WPH716lW6evUqbd68mUaNGvXd7fLw8JC/HzlyhHr27Pndr6UYOXIkjRs3TvPYvXv3aNq0abR+/Xo6duwYZc+e3ehzT506RQ0aNNCEzUREL1++pO3bt9P27dupU6dO9Oeff5Ktra3B89++fUvNmzenAwcOaB7//Pkz3bx5k27evEnr1q2jK1euUMGCBWO0Pe/evaOsWbMaPP7t2ze6c+cO3blzh5YvX07Lli2jVq1axeg1Y+rWrVtUoUIFevXqlebxwMBACgwMpFu3btHWrVspf/78VKJEiR/6twEAAAAAAADiAiZKMz8YqWsBbt68SURETk5OmoAwOlmyZKEBAwbQgQMH6Pr16/TmzRt6+PAhHTp0iBo1akTMTMOGDTMI5/RNmjSJtm7dSv369SM/Pz8KCgqiGzduUIcOHYiI6PLlyzRx4sQoX6N379508eJFGjt2LN26dYuCg4Pp8uXLVLt2bSKKHPW5fPnyGG+bvrVr19LMmTOpbdu29Pfff1NQUBD5+/vT0KFD5ejagQMHGn3uqFGjZKBbqVIlOnXqFAUGBtLdu3dpzJgxdPPmTerfv/93ty1HjhyUNm1aIiLatWsXderU6T+NOj158iSNGzeOKlasSCdPnqTAwEC6ffs2/fHHH2RnZ0fPnz+nmjVr0ufPnw2e6+fnR1WrVqXAwEDKnj07rVixgu7fv0/BwcF09epV6t+/P9nY2NDixYtp7NixBs8PCwujmjVryn2mQYMGdPjwYXr58iUFBgbSpUuXaMaMGVSgQIFYb1e+fPlo5MiRdPToUbp16xYFBgbSvXv3aMeOHVSpUiX69u0b/f7773Tt2rXYd1oUOnXqRK9evSJnZ2eaOnWqPFYePXpEp0+fplmzZlHRokVJCCGfc/PmTbpx44b8b/VEh8pP2bJlf2g7AQAAAAAAAMB6YKSumdu4cSP5+/sTEVHZsmU1o3ajc/HiRYPHkiVLRhkzZqTKlSvTkCFDaMqUKTRp0iSqVq2ayde5f/8+rVy5ktq0aSMf8/DwoKVLl9LLly9p3759tHz5cho/frzJ13j06BEdOnSIKlSoIB9zd3enbdu2UeHChenq1au0bNky+v3332O8ffptHD16tGZErYeHB02cOJHevXtHf/75J/n4+NCCBQs0JRBevHhBU6dOJaLIQPfAgQNydKqnpyeNHDmScuTIQU2bNv2udhFFlrGYNm0aNWvWjIiIlixZQkuWLKG0adNSsWLFqEiRIlS2bFkqWbIk2dvbR/t6jx49okqVKtH+/fvl/uDp6Unjx4+nTJky0e+//07+/v40d+5cGjx4sOa57dq1oy9fvlCxYsXo+PHj5OLiIpe5u7vT9OnTKXv27NS5c2eaPHkydenSRTO6efbs2fTXX38REdHEiRMNRnl7enpS4cKFqV+/fhQeHh7jPkqSJAldvXrV4HFPT0/KmjUr1alTh5o1a0YbN26k6dOn06pVq2L82lF5//49nT59mogiL1706tVLLkuWLBllyJCBSpcuTX369NE8z9nZWTMyXX+iQwAAAAAAAACA/wIjdc0QM9PLly/J29tbhpxCCBoyZMgP/TutW7cmIqIzZ87Qp0+fTK5XokQJTaCr1r59eyKKvHX/6dOnJl+jUaNGmkBXYWtrK9tx+fLlWAWBamnTpqU//vgjyjaGhYWRn5+fZtm6detk7dcZM2YYLTfQpEkTKlmy5He1S9G0aVPasmULpUmTRj727Nkz2r59Ow0fPpx+/fVX8vLyohEjRlBoaGi0rzd79myjAX+HDh2ocOHCRES0bNkyzbITJ07I7Z8/f74m0FXr2LEjZc6cmcLCwgxKbsyZM4eIiH755Zdoy3bE5gJETChlFw4fPvzDXlM98aCx0hwAAAAAAAAAliC+J0XDRGmxh1DXTKgnWrKxsSEvLy/q1asXhYaGkq2tLc2aNctoKBqdixcvUpcuXSh//vyUJEkSsrW1lX8nT548RBQZbN2/f9/ka1SvXt3ksly5csnf9WuSxvY1wsLCYjTJlzGVK1c2GSJG1cYzZ84QEVGmTJkof/78Jl+/Tp0639UutQYNGtCDBw9o69at1K5dO8qePbvmlv7AwEAaP348/fLLL1FO7JYjRw75b2fq7xBF1tgNCAiQjythaPLkySlXrlz08eNHoz+hoaGyfMKFCxfk82/evEkvXrwgIjIZ8v9Xx44dozZt2lDOnDnJ1dWVbGxs5P5as2ZNIoq8gKCetOy/cHd3pwwZMhAR0bBhw+jkyZOxqlsNAAAAAAAAAPAzoPyCmbK1taWMGTNS+fLlqWfPnt9Vo3T48OE0ceLEGIVU7969M7nMy8vL5DL1LehRjfb9Ea8Rle99/UePHhERUc6cOaN8/eiWx5SDgwPVr1+f6tevT0SRt///9ddf5OPjQ2vWrKGwsDC6ceMGderUibZv3270NdQhtTG5c+eWvz969IhSpEhBRER37twhIqI3b95oSlBERR0uq4P/mE6AFlMRERH0+++/08qVK2O0/rt372K8DdGZNWsWNWzYkPz9/al8+fKUMmVKKleuHJUoUYIqVaoUZdhvKb73YgoAAAAAAAAA/BwYqWsm1BMthYaGUnh4OPn7+9PSpUu/K9DdtGkTTZgwgZiZypYtS+vWraMbN27Qmzdv6P379/ThwwfNhFNRlT2I6W30UYXHP+I1ovK9r//x40ciIpOlCBQ/q16qm5sbVa1alZYuXUqnT58mR0dHIiLasWOHyXIW0bVFvVw9ojWq4N6UL1++yN/fv38vf/9Rgapi+vTpMtCtVasWbd26lW7fvk2BgYHyuNi7d69c/3vLdBhTr149OnHiBFWtWpXs7Ozo9evX5OPjQ/3796cCBQpQ/vz5ad++fT/s7yVEHh4e0f4AAAAAAACA+dIxJ7gfiBpG6pqJHz3R0vz584mIqFSpUnTixAmysTHM95VastZM6fPo6tgq4e/PVKxYMfr999/lv93ly5cpXbp0sW6Lerk6fFW2tUCBAga1hWPCzc1N/v6jyh8olG1u0qQJbdy40eg6X79+/aF/U61s2bJ04MAB+vDhA507d47++usvOnToEJ05c4auXbtGNWvWpE2bNlHjxo1/WhsAAAAAAAAAABQYqWullNCucePGRgNdItKM1LVWGTNmJKJ/SxOYEt3yH0VdK9dUKYpbt25F+Ro3b96Uvyv1YomIsmTJQkSR2/I9ZS6yZs0qf/+eUNiU4OBgOSq5WbNmJteLi/3V1dWVKlWqRCNGjCBfX1/y8/OjZMmSERHRqFGjfvrfjy/BwcHR/gAAAAAAAABA3EGoa6WUUY0REREm11mzZk1cNSfBKl26NBERPXjwgK5fv25yvZ07d8ZJe9QlF0zVCb5z544muNW3bds2IiLKli0bpUyZUj5epUoVIoosqbB+/fpYty1XrlyUNm1aIiJavXp1rJ9vinoErqn9VafTfVeb/6v8+fNT8+bNiSiy33U6nVxmb28vf4/qODMH7u7u0f4AAAAAAACA+eIE+D+IGkJdK5U5c2YiItq1a5fROrWrVq2iI0eOxHWzEpwWLVrIerz9+/c3Gs75+PjQ2bNnv/tv3L9/n4YNG0ZBQUFRrvfkyRNasmQJEUWWOihRooTJdfv06WO0rcuXL6dLly4REVGHDh00yypXriwn/Ro8eDDduHEjyvYEBAQYTKDVu3dvIiL6+++/aerUqVE+P6ZBZ4oUKWRpCFPh+dixY3/KaOnAwEAKDAyMch1/f38iigw+1aPePTw8SAhBREQvXrz44W0DAAAAAAAAAOuFUNdKNWnShIiITp48Sc2bN6dLly5RUFAQXb16lfr160cdOnSg3Llzx3Mr45+XlxcNGDCAiIgOHTpENWrUoNOnT1NwcDDdv3+fJkyYQK1atZKlC77H58+fadKkSZQmTRpq0qQJrVq1im7cuEGBgYEUHBxMfn5+NGXKFCpSpIgMGEeNGiUnTdOXMWNGOnz4MFWtWpV8fX0pKCiI7t69SyNGjKDOnTsTUWSphF69emmeJ4Sg1atXk4uLCwUHB1OJEiVo+PDhdPHiRQoKCqLAwEC6ceMGrV27lpo0aULp06en+/fva16jd+/eVLJkSSKKDIYbN25Mx44do9evX1NwcDD9888/5O3tTUWKFIlxuQRbW1tq0KABEUWOAO7duzddv36dgoKC6MKFC9S2bVsaM2bMT9lfr1+/TunSpaMmTZrQmjVr6MaNGxQUFESvXr2iM2fOUOvWreUkacqIXUWiRIlkuYz58+fTzZs36evXrxQeHk7h4eHfPekfAAAAAAAAAAAmSrNSgwYNon379tGFCxdo48aNBpNP5cmTh5YvX06//PJLPLUw4Rg3bhzdu3ePtm7dSocOHaJDhw5plhcoUIBGjx5N9erVIyKSI3tjytHRkRwcHOjr16+0efNm2rx5s8l17ezs6I8//qB+/fqZXOfXX3+lFi1a0IQJE+jo0aMGy728vGjPnj2UKFEig2UFChSgY8eOUaNGjejJkyc0YcIEmjBhgtG/I4TQlBggiiw5sHfvXmrcuDEdOXKEfHx8yMfHx2RbY2rKlCl06tQpevjwIc2dO5fmzp2rWV6uXDkaMmQI1ahR4z//LX1fvnyJ9t+lUqVKNGnSJIPH+/fvT+3ataNz585p6iETER0/fpzKly//o5sLAAAAAAAAEGs6DDwyOxipa6WcnZ3pxIkTNGrUKMqZMyc5OjpSkiRJqFChQjRhwgQ6f/48pUiRIr6bmSDY2dmRj48PrVq1ikqXLk2urq7k4uJC+fLlo3HjxtFff/1Ftra2cn03N7dYvX62bNnozZs3tHnzZurevTuVKlWKUqRIQfb29uTg4EApUqSgMmXK0LBhw+jmzZs0evToaF9z/PjxtHPnTqpcuTIlS5aMHB0dKWvWrDRw4EC6fv065ciRw+RzixcvTnfu3KGFCxdS9erVKXXq1OTg4EBOTk6UPn16qlGjBs2bN4+ePXtGBQoUMHi+u7s7HT58mHbs2EENGjSgtGnTkoODA7m7u1OePHmodevWtHv3bsqbN2+M+yhlypR04cIF6tu3L2XKlIns7e3Jw8ODSpYsSd7e3nTs2DGjIfV/VapUKTp69CgNGzaMypUrR5kyZSJnZ2dydHSkdOnSUd26dWnz5s106NAhWSJCrW3btuTj40MVK1YkT09PzX4CAAAAAAAAAPC9BOMeYID/bNasWdSvXz9yc3OjkJAQWUs1LpUvX55OnjxJbdq0oZUrV8b53wfrZueQJr6bAAA/Wdx/slmu+PieYMkwsggSos8vfOO7CRYlkVfZ+G4CgIHwsOfx3YQfKkuywvHdBAP3Ay/HdxMSNJRfAPgBlAm8ChcujBM1AAAAAAAAADArTLhIam5QfgEgGt++faMPHz6YXL5+/Xo6efIkEf07AR0AAAAAAAAAAMDPgpG6ANF49+4d5cqVizp27Eg1a9akbNmyka2tLd2/f5/WrVtH8+fPJ6LI2rht2rSJ59YCAAAAAAAAAIClQ6gLEAOBgYE0adIkmjRpktHl6dOnp507d/6UyboAAAAAAAAAAH4mZl18NwFiCaEuQDSSJk1Kq1evpoMHD9KVK1fo9evX9O7dO0qSJAnlypWLateuTV27dqXEiRPHd1MBAAAAAAAAAMAKCGZMFwsAAP+NnUOa+G4CAPxkmAb0x8Gkqj+WDqczkAB9fuEb302wKIm8ysZ3EwAMhIc9j+8m/FCZPAvEdxMMPAz6J76bkKBhpC4AAAAAAAAAAIAV0xEukpobm/huAAAAAAAAAAAAAADEHEbqAgAAAAAAAAAAWDFUZzU/GKkLAAAAAAAAAAAAYEYQ6gIAAAAAAAAAAACYEZRfAAAAAAAAAAAAsGKYKM38YKQuAAAAAAAAAAAAgBlBqAsAAAAAAAAAAABgRlB+AQAAAAAAAAAAwIoxo/yCucFIXQAAAAAAAAAAAAAzglAXAAAAAAAAAAAAwIyg/AIAAAAAAAAAAIAV06H8gtnBSF0AAAAAAAAAAAAAM4JQFwAAAAAAAAAAAMCMoPwCAAAAAAAAAACAFWNC+QVzg5G6AAAAAAAAAAAAAGYEoS4AAAAAAAAAAACAGUH5BQAAAAAAAAAAACvGjPIL5gYjdQEAAAAAAAAAAADMCEJdAAAAAAAAAAAAADOC8gsAAAAAAAAAAABWTEcov2BuMFIXAAAAAAAAAAAAwIwg1AUAAAAAAAAAAAAwIyi/AAAAAAAAAAAAYMWYUX7B3GCkLgAAAAAAAAAAAIAZQagLAAAAAAAAAAAAYEZQfgEAAAAAAAAAAMCK6VB+wexgpC4AAAAAAAAAAACAGcFIXQAAAAAAAAAAACuGidLMD0bqAgAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgTlFwAAAAAAAAAAAKyYjlB+wdxgpC4AAAAAAAAAAACAGUGoCwAAAAAAAAAAAGBGUH4BAAAAAAAAAADAijGj/IK5wUhdAAAAAAAAAAAAADOCUBcAAAAAAAAAAADAjKD8AgAAAAAAAAAAgBXTofyC2cFIXQAAAAAAAAAAAAAzglAXAAAAAAAAAAAAwIyg/AIAAAAAAAAAAIAVY0L5BXODkboAAAAAAAAAAAAAZgShLgAAAAAAAAAAAIAZQfkFAAAAAAAAAAAAK6ZjlF8wNxipCwAAAAAAAAAAAGBGEOoCAAAAAAAAAAAAmBGUXwAAAAAAAAAAALBijPILZgcjdQEAAAAAAAAAAADMCEJdAAAAAAAAAAAAADOC8gsAAAAAAAAAAABWjAnlF8wNRuoCAAAAAAAAAAAAmBGEugAAAAAAAAAAAABmBOUXAAAAAAAAAAAArBgzyi+YG4zUBQAAAAAAAAAAADAjGKkLAAAAAAAAAABgxTBS1/xgpC4AAAAAAAAAAACAGUGoCwAAAAAAAAAAAGBGUH4BAAAAAAAAAADAiqH4gvnBSF0AAAAAAAAAAAAAM4JQFwAAAAAAAAAAAMCMCMb0dgAAYOHevn1LHh4eREQUHBxM7u7u8dwi84W+/HHQlz8W+vPHQV/+OOjLHwv9+eOgL38c9OWPhf4EiDmM1AUAAAAAAAAAAAAwIwh1AQAAAAAAAAAAAMwIQl0AAAAAAAAAAAAAM4JQFwAAAAAAAAAAAMCMINQFAAAAAAAAAAAAMCMIdQEAAAAAAAAAAADMCEJdAAAAAAAAAAAAADOCUBcAAAAAAAAAAADAjAhm5vhuBAAAAAAAAAAAAADEDEbqAgAAAAAAAAAAAJgRhLoAAAAAAAAAAAAAZgShLgAAAAAAAAAAAIAZQagLAAAAAAAAAAAAYEYQ6gIAAAAAAAAAAACYEYS6AAAAAAAAAAAAAGYEoS4AAAAAAAAAAACAGUGoCwAAAAAAAAAAAGBGEOoCAAAAAAAAAMB/8u3bt/huAoBVQagLAAAAAAAAAADfrUWLFjRkyBD6/PlzfDcFwGoIZub4bgQAAAAAAAAAQFwJDw8nOzu7+G6GRejQoQOtWLGCbG1t6eHDh5Q2bdr4bhKAVcBIXQAAAIDvhGvjAAAA5mfRokU0dOhQCg0Nje+mmL1+/frRihUryNXVlY4cOYJAFyAO4bIUAAAAwHeIiIggW1tbIiIKCAigFClSxHOLzJf+aCmdTkc2Nhh7APFPfZwTYd/8L/T7EiC+bNiwgbp27UrJkiWjxIkT04ABA8jFxSW+m2WWDh06RMuXLydHR0fy8fGhX3/9VS4LDg4mDw+PeGwdgOXDNxIAAEiwIiIi4rsJAEbpdDoZTgwcOJB69+5Nd+7ciedWmSdmloHuwIED6Z9//iEbGxuMgoZ4pw4hu3fvTtu3b0egGwP6x25ERISmL9esWRMfzQKQMmbMSEWKFKHg4GBasmQJTZ06FSN2v9OtW7fo/fv3VLRoUSpTpox8fOjQodS/f3969OhR/DUOwArgWwkAACRI6tBs1apVCMwgQVGCnbFjx9KMGTNo3759dP36dfr06VM8t8z8CCGIiGjUqFE0Y8YMWrp0KX379k0+DjGjDtJM/Q6xo3wGDR8+nBYsWEANGjTAZ1EMCCFo27Zt1K1bNyKK7EelL3v37k1t2rSh1q1bx2cTwcqVLFmSFixYQMWLF6cXL17QsmXLEOx+JwcHByIievLkCV26dImIiPr27UtTpkyh3bt309evX+OzeQAWD6EuAAAkSEpo1rVrV2rXrh1NmjSJ7t+/H8+tMk8IdX6OI0eO0LRp08jW1pYWLVpEv/32Gzk7O8d3s8xSaGgovXjxgoiIrl69Sh8+fCAi7LsxFRERoQnBlf4jigzY0I/fb/PmzTRx4kSyt7enBQsW4BbtGLhy5Qo1bNiQFi5cSL1795aP9+zZk7y9vUkIQU2bNo3HFponU8cxju/vU7RoUZozZw6VKFECwW4s/f333/L37NmzU6pUqejp06c0b948ql+/Ps2ZM4dsbGxo+fLllCNHjnhsKYDlQ6gLAAAJik6nk7+HhYXRkydPyMnJiXbs2EHjxo0jf3//eGyd+VGHPR8+fCA/Pz86duwY/fPPP/TkyZN4bp15CQ8P1/z37du3KTQ0lLy9valp06bk6OgYTy0zfy4uLtSpUyeyt7cnX19fWrhwIRERRuvGgPq29jlz5lDz5s0pd+7c1KhRIxo9ejSFh4ejH2NB/zg/duwY2djY0IoVK6hz586YACgGIiIiqFGjRuTi4kLe3t40YMAA6tu3L82fP5+IiPbs2UM1atRAGBkLOp1OHsePHz+mc+fO0a5du+jWrVsYCfkfFCtWDMFuLLVt25YqVKhAmzZtIiKiihUr0oABA4iIyMfHh3bs2EFERPv376fatWujlBrAT4ZQFwAAEoyIiAg5Qvfp06f04MEDatKkCeXMmZNCQ0Np165dNH78eAS7MaQf9tStW5cKFy5MlSpVomLFilHRokVp1qxZ9ODBg3huqXlQ6r56e3vTkSNH6NChQ5QyZUqqWLFiPLfM/DEzFStWjDp27EhCCDp69Ci9fv06vpuV4DGzPMb79+9Pffv2pc2bN9OLFy9o+/btNHbsWKpTpw6dPHkSwU8M6HQ6eZxv3LiRwsLC6Nq1a5QtWzaqWrVqPLfOfBQtWpT69+9PjRo1IgcHB5o5cybNmTOHiIiOHj1K1atXJ2bGxYYYYmb53cjHx4fq1q1Lv/76K9WtW5cKFSpEXbt2pT179sRzK80Xgt2Y69ChA61evZpsbGwoW7Zs8vF+/fpRqVKlSAhBQggqWbIkeXp6ElFk+RVcwAH4iRgAACABCA8Pl79PnjyZc+TIwUIITpw4MQsh2NbWloUQnCxZMm7Tpg37+/vHY2sTvoiICPl7//79ZR+mSZOGf/nlF86VKxcLIVgIwU2bNuXDhw/HY2vNR5s2bVgIwS1btuQSJUpwnjx5ODQ0NL6bZTFWr14t98s9e/bEd3PMxqxZs2S/9enThwcMGMDt27dnBwcHFkJwmTJleMeOHfz58+f4bqpZ6NGjBwshuFWrVly0aFFu1qxZfDfJbOh0Ovn73bt3OU+ePCyEYBsbG65du7Zc9u3bt/honllbt26dPM7t7e05VapU8ve0adPy8uXL47uJZu38+fNcsmRJFkJwmjRpeOTIkfzx48f4blaC8ccff8jv5SdPntQs69ixo9wXlX20bt26fOzYMbmO+r0BAH4chLoAABDv1F/0+vbtKwPIP/74g7ds2cK7du3iyZMnc9q0aVkIwUmSJEGwG0MjRoyQX7BXrFjBd+/eZWbm169f8/z58+WywoUL86VLl+K5tQnfkiVLNCfV6dOn58DAQGbGCcuPUr9+fRZCcLly5fj169fx3ZwE7+3bt1y0aFG2sbHhXbt2yce/fPnC+/fvZ0dHRxZCcMmSJXnbtm0IdqPx5MkTrlevHjs6OsqAolSpUvzx40fNxTKI3pgxY+R7pXKBoUePHnK5+mIuRM3X15ddXFxYCMFDhgzhQ4cO8aNHj3jIkCGcN29eFkKwg4MDL1y4ML6batYQ7Bp369Ytzp07Nzs4OPCGDRs0yx48eMATJkxgIQQfO3aMZ8yYIb8n1atXj48fPy7XxfckgB8PoS4AACQYc+fOlV8Ed+zYYbD8+fPnXL16dbaxsWE3NzcEu9HYvn07Ozs7sxCCt23bxszak+jr16/Lk8SGDRvGVzPNztq1a+V+KoTg4cOHc1hYGDPjhMUUU+GNur+UwGzRokXs5OTEGTJk4PPnz2uWgaHLly+zEIKHDRvGzP/2tfL/f//9N4LdWLp8+TK3b99e9luOHDn40aNHzIwgMqa+ffvGq1ev5nTp0vH06dO5Y8eOsj979uwp10N/Gqe85yn9owTkw4cPN1h369atXLlyZRZCsJ2dHYLdKKg/S5TPH51OxxEREfK/EewaOnPmDNvb23Pq1Kn577//lo+3b9+ehRB8+vRpfvjwoXx83LhxCHYB4ghCXQAASDAaNWrEdnZ2PGDAAGbWfvFTTmxev37NjRo1YiEEe3p6cps2bfjevXvx0t6EbtiwYWxra8t9+vRhnU4nT1yYmU+dOiVLW7Rs2VI+B+GZaer9UV0moHTp0rxv3z7NCSL8S90fo0aNYm9vb37//r08ppV9Tlnv9evXnDVrVhZCcKNGjeK+wQmYsePz4sWLLITgnTt3mlwfwW7MqPfVy5cvc7t27ThRokQymFAgiIyZL1++cEBAADNHBmWtW7dGsBsD+iUsmJlLlCjBWbNm5ZcvX8p11P22Z88eBLsmqPvz48ePHBAQwBcvXuSzZ8/y58+f+dOnT8ysLQmCYFfr77//lt95Jk6cyMzMvXv3lo8dOHCAmbV9OH78eAS7AHEAoS4AACQIz58/lyd73t7eRtdRAopXr15xgQIFEOxGISgoSAZjyq1ySv+dPn3aaKD75csXZmarPnGJiv5J9Jo1a+QJS61atfjkyZMIdvWoQ0ilTqkQgqtWrcoDBgzgoKAgOcqZ+d9wZ/ny5ezs7MwZM2aUo4KsvU/V+97z58/55s2bfPXqVb5z5w47Ojoa1DhUINiNHf1gt3379vKOh86dO8tlCCL/FdWxqV528eLFaINdZf1r1679pNaaD29vbxZC8Lp167hZs2Zcq1Ytg3XU/Ytg15D6M+jgwYPcqlUrTpcuHdvZ2bEQgosVK8atW7eW4bm6PxHsag0cOFB+hpcoUcKg/r3Sd+r3RgS7AD8fQl0AAEgQAgICOHny5Gxvb88+Pj7MbPykWXns4sWLnCRJEhZCsJubG7dt25YfPHgQp21OyAIDAzljxoycKFEiPnPmjHzcVKCrDtaaNGnCS5YsidP2JhT6IyHfv38vJ0JTTkC+fv0ql6tLMdSpU4dPnDiBYPf/qY/foKAgnjp1Krdt21ZTuiJnzpzcv39/PnXqlOa5Z8+eZU9PTxZC8KRJk+K66QmOui/Hjh3LRYsWZUdHR7a1teVff/2VhRA8f/58ZjY+AZWxYLd06dK8bds2OUrNmkR3R4L6/VAZsevk5MRCCO7atatchmBX2wdfvnzhV69eGdTCVu+TUQW7ynvroUOHWAjBlSpV+smtT7hevnzJlSpVku+Vjo6OXLduXaPrRhXsLlq0KK6anOCo+2Xt2rWyrrMQgl1cXOQEvMokvHv27NF8vjMbBrujRo2yyslRw8PD+e7du9ylSxdZv1kIwWfPnmVm7Xumsr4CwS7Az4VQFwAAEoSIiAguWLAgCyG4QYMGUY6G+PbtGwcEBHCePHk4ceLE7OLiwq6urtyjRw9+/vx5HLY64QoICOCcOXOynZ2drKfr6+trNNBVn3Dv37+fhRDs7OzMQUFBVvWFW30SsmHDBu7Xrx+nS5eOs2bNyjVr1uShQ4fKW4n1TxZNBbvWSh2atWnThrNkySIvuhw8eJB79OjB6dOn1wS8ffv25TVr1sjnTZw4kYUQnDx5cr5y5Upcb0KCod6XBg0aJMMadd8JIThPnjwcHBzMzMbDRnWwq9TSzpYtG//zzz9xsyEJhLpv7t+/z/v37+c///yTFyxYwPv375d3LKgh2DVOve0zZ87kunXrcrJkyTh9+vTct29fPnjwoFweVbCr7s8DBw7IfbpXr15xsyEJUEREBB87dozr1Kkj+6N48eL87NkzZjYMw0wFu05OTjxjxow4bXtCs3nzZtmHXbt25c2bN/Pp06d5586dXKNGDc6SJQsLIdjd3Z3XrFnDERERJmvsKvu2Jd/lsHfvXvlZwqz9PG/cuDELIdjGxoaFEDxz5ky5TP+9MKpg98SJEz9xCwCsC0JdAACIdxEREfzt2zdu166dDCeOHTsW7fMqVKjABQoU4Pr167MQgr28vNjb25u/fv1qFaGasW1Uf4lu0qQJCyG4YsWKvGnTJnZ1dY0y0P3w4QN369aN7e3tZc00a6Hut6FDh7IQQo7iUYIHIQRnzpyZjx49ajAaEiN2jVOfyC1atEgGZt++feOnT59ynz59uEKFCppwsnr16rxhwwbesGEDFy9enJ2dnXnlypXMbN01n5cvXy77aN68ebxnzx7esmULlytXTo5qrly5MoeEhDBz9MGuEIKbNWsWp9sQ39R9MnXqVC5UqJBm37Ozs+MiRYrwhg0bDC4QItjVUh+L/fr1M3qxoUCBAjxx4kT5HqgezXfx4kVu27at7M9y5crJevlCCO7Xr5/Rv2UN1J8dJ06c4Bo1ash+mT17tsF6xv57z549XK1aNRZCcNmyZa32c8jPz0+Woho7dqzB8tevX/O6deu4cOHCLIRgDw8POZJUv8ZumTJlWAjBtWvXtth9smLFijKsVQe7zMxz5syR+2GVKlXk7+PGjZPrxCTYtbOz47p162ou+gDA90OoCwAA8Ub/JOPixYvylq4aNWrwkydPjD4vIiKCX79+zRkyZOCGDRvy48eP5S3IBQoU4BcvXhh9fUui/qL86tUrvnTpkvxv5URk3bp17Onpya6urrJf27ZtK9fTv11u1apVLITgTJkyaUo2WDr1fqKuGTd69GjesmUL//XXXzx58mQuVqwYCyE4derUvGLFCg4LCzM5YlcZiWKpJ34xcfnyZU6VKhXb2tryrl27NCOblH759u0bh4aGsre3N9eoUUMGPB4eHuzl5cUpU6ZkIQTnzp1bhpXWQv/kWLlIs2XLFs3jN2/e5L59+3Ly5MllveKYBLuPHj0yeMySqbexf//+8lhNnjw5//LLL+zs7CxL+qRPn5579erFd+7c0byGfrDbvXt3ucySP2+iMmnSJNmXAwcO5AkTJvCIESNkX3p4ePDgwYONBrt+fn7cv39/2Z/Kbd3Dhw+X61hjYM6sDXZPnjzJtWvXln2kvqMhqmB3y5Yt3KdPH9nn1rSPKtu6fPlydnR05FKlSnFgYKBcpu6LL1++8IEDB+RFnrRp0/Ljx481r8PMfObMGe7UqZPF9mdoaChXr15d7mf6o2nXrFnDpUuX5v379/P9+/flQAwhBI8fP16uF1WwO2HCBPmcxYsX/9wNArASCHUBAOCn0/+Cpx8mqiegmj9/Ptvb28sRj7du3TKoccYcGVgKIbh3797MHHkbbapUqeRt3JZM3Z+LFy/mKlWqcOLEiTUjx5iZ37x5I2vy2djYcN68efnNmzfMzAZ1NLdv3y6/aFvrrZoLFy6UfbBz506D5WvXruVEiRKxEII7duwoHzcV7JYtW9aqJvDTH728adOmKPcn/RPiN2/e8KlTp7hGjRpyZJWtrS3b2Niwm5sbr1ixgpmtI4BUH+NnzpzhBw8ecLZs2bhevXr89etXza3BzMwPHz7kQYMGxTjYVT/X2kKz0aNHy2N0+fLlfPPmTWZmvnLlCq9bt44zZcrEQkROwtm+fXuDWu1KsKuUsmnevHl8bEa8Ue87jx494uzZsxt9zzx48CBXrlyZHRwcOHHixDxo0CCjwW5QUBDv37+f69WrxyNGjOBNmzbJZdayb5oKB5X3VCXYVZdiiGmwq/9a1kL5nFBGOTdt2jTK9T99+sQLFy7klClTso2NDU+YMEHzOvostT/fvn3LNWrU4FatWsnH1OXQXr58KX+/dOnSdwW7gwcPNvi+CgDfD6EuAAD8VOovcuvWreO+fftyjRo1uHXr1rx//355i6vyxfnFixc8dOhQGez++uuvPGfOHDlq4uHDh7xy5Ur5JVKZVC0iIoKbNm3KQgiTk4lYAnV/Dh8+XPZDhQoVNLXNlJO6Bw8ecNq0aWV5ikaNGrGvry+/e/eOmSMnTtMfaaWwhvBM8e7dO65Vqxbb2try3LlzmVl7sUE9wVyLFi0Mnq/uKyXYbdOmTZy0PaFp27Ytr169WtYx9PX1jXJ9/TIVISEhfO/ePe7cuTPnz59f7pvqsiHWokGDBpwyZUpetmwZe3h4yItYxjx69ChWwa418vX1ZS8vLxZC8ObNm42u8+rVKy5atCgLIThlypQ8duxY/vDhgyYou3Lligwz1Bd4LJ3+fnTx4kXN7df6FxvOnj3LNWrUkMHuwIEDNaP01fSDSEv//FFv76dPn/jp06d84sQJvnTpEt+9e9fo+v812LVGSnku5fPDWM1sxYsXLzhv3rwshOBatWrFVRMTHPVdNR07duSxY8fKUc7M2mNTucgV22A3qscAIHYQ6gIAwE+j/uKnvq1d+UmbNi3Xrl2br1+/rnnegwcPePz48bJkgKurK6dMmZLLli0rRwUJIXjYsGGa5ykhZ+HChTkkJMTiTmpMlQlYuHCh5lZqZT3ly7K/vz/nypVLrm9ra8vZsmXj4sWLa+rFqvvT2r5oX7hwge3s7DhlypTs5+fHzP/uv+pAVx0sKiPIlb5Sjz67cOGC/N3Swwm1+fPny/3p119/ZS8vLzkqPCbHo/46t27d4unTp8vX3Lp1609pd0IUFBQkL25lypSJHRwceMyYMcxs+viMKti11JFlsbFgwQIWQnDJkiUN6kUy/9uvb9684Tx58rAQgrNmzSo/o9T9fv78eV67dq38b0v7vIlK+/btuWvXrnzixAl2cnIyqI0Z02BX3Z/W9D6p3tZ9+/Zx48aNOWnSpPJ9zsXFhXv06MEHDx7U9FFsg11rpvRxw4YNWQjBuXLlkp/ZUc1HoFzkzpo1K3/69Mmq+1S5e8nOzo5nzZrFb9++lcu+N9hV96c19y3Aj4RQFwAAfroRI0bIL3tVq1blVq1ayZBCCMF58+Y1mN3+48ePvGvXLs6QIYMMKJSfFClS8IgRI+S6Sl3O3377jYUQ3LBhwzjewrgVVZkA/S/Jyhfqp0+fcvv27blgwYIG4XrNmjV5yZIlBs+xJtu2bZMlE9SjzaILdL9+/cpz5syRo1hiMjLFUul0Oj5w4ADXrFlTs3/p14CNCfUJY0BAAFetWpXt7OzkcW/pJ4PK9j18+JDTp08v+zJv3rwma40rjAW7xgJMa6LT6fjbt2/crFkzFkJw69atTa6rHLNXr16Vo3rVo/Ojm6DS0i1btkzuj4ULF2YnJyd++PChwXrfE+xaA/1yPTY2NrI/lRri6v4dP3685oKMsWDXWi8uREXph82bN8v6zhMnTowy2GX+N9RNkyYNh4SEWNX+qb+twcHBspa7nZ0dz5w584cEuwDwYyHUBQCAn8rX15ddXV1ZCMHbt2+Xt769fPmShw4dKmtnZsuWTQa76kksHj16xKdOneKRI0fyiBEjePXq1Xz69Gn5+soX9Dt37nCePHnYxcWFly5dKl/Hkuh0Og4KCpIzWk+ZMiVGz1O+eIeGhnJgYCCvW7eOFy1axCtWrOC///5blmJgtt4v30rJhPz58/P79++ZOXLfNRboqkfkzp07V9Z2tqaRZqZERETwiRMnuGrVqvLkrn///nL59x6Tf/zxBwsROamVuqafJVOOxQcPHshwMUWKFDxz5sxoJ4179OgRDxkyhJMlS8ZCCJ4/f35cNDnBMHUstmzZkoUQXKpUKQ4NDTW5nk6n49DQUG7VqhULIbhcuXI4vv+fr68vN2vWjB0dHdnW1pYTJUrE27dvZ+aoR+Wpg90kSZJogl1r5OPjI98je/fuzdu2beNnz57x+vXreejQoXJZ8uTJecCAAdEGu9Y+6ZR+GR/FzZs3OUeOHPK437lzp9xP9WuL63Q67tmzJwsh+Pfff4+7xicA6mP31KlT8jMmJCREljaLbbA7ceJEuczSvo8DJCQIdQEA4IfSv8VXud11wYIF8jF17cw5c+Zwzpw55e1uly9fZubIL5jRnfAprxMaGipHBxYrVkzW6bVEZ8+eZSEiZwiPrlapWlRfqE2dDFka9f5k7MTP09OTnZycePfu3Xzq1Cmjga56/37y5ImcKdqaygKYovRpREQEHz9+XE5QI4SQk5yp14vNa167do2TJUvGLi4ufPXq1R/a7oRMOdF++PAhp0mTRt5GvHLlSs3FGGMePXrEXbp04cGDB8dFUxMMdTih1IZURt8rZWvy5cvHr169Mlhf359//ilLBQUFBf3chpuRc+fOcbNmzWR5EPXdMdEFu7/99pt8nhIGWxs/Pz/Oli0bCyF49OjRRtfZsmULZ8yYUdbDnzFjhsFn2MmTJ2XN2Pz581v8Z7hadNuq7ivlThwhBFeqVIl9fHw07w2Ka9eusZeXF9va2sqQ3Br6VL2N3bp1kxcClQvcb9++/e5gd8iQIXG2HQDWCqEuAAD8FIMHD+aHDx/y1KlT2cHBgW/cuKFZrnyJfP/+vclgN6pRVMyRk1tduXKFq1SpIk987ty58xO36uc6ceIEf/jwIcp1Nm7cyEIILlKkiHwsqpMO/T7UH+1jLdRBg1LjVf3Y69evuVy5ciyE4P/973/s7OzMQgjNDND6Fyy8vb1ZCMHly5eXE/lZO/1gVymJIoTgjRs3GqwXHeXf6OzZs5wkSRJOnjw537x588c3PJ7E5GKLOthVJj3MnTt3jIJddRBpaTV1lf7x8/Pj0NBQZtZuY7t27bhkyZKa8OHvv//mRIkSsRCC27ZtKx83FexOmzZNhrrq17FW6v3177//5hYtWsgySn369JHLogt2S5QoEeWkf5YgqmPbx8eHXV1d+ZdffuGAgAC5vvouJWbmPXv2yFH6v/76q7ygpR5peujQIR48eLDmDhJLp/5ec+fOHd6/fz/37NmT+/Xrx6NGjeKrV68alJxRl60qVKgQ9+jRg1++fMkfPnzgZ8+e8f79+zlTpkwshOAGDRpY5V1LM2fOlH00Z84czXtebIJd9USSxiaWBYAfC6EuAAB8l9evXzOz8ROXMWPGyJpkDRs25OLFixt9jf8S7F6+fJnr168v603mzZvXrAPd//3vfyyE4KVLl8rREcYo9Qzd3NxiFW7t2LHjRzTT7LVp04aLFCkiT0bUJ27r1q3T1DOsXbu2XKYftm/fvl2up5T7sAYxuV1a6VMl2K1Vq9Z/CnaZWb5G6dKlLaY+rHrfCwsL4/v37/O1a9c4ODhYLlP+XwkrvyfYZbbcCzjKcdi6dWtNP/Tu3Vvuc8pniU6n45CQEO7YsaMMIkeOHCmfoz8hFXPkqDU7OztNCRFrow4a9UNHJdhVRt4OGDBALosq2H3w4IHJ9cydujyMseNOp9NxixYtWAjBv/32m9HXUD9P/bk0duxYg3XU61rahRtj1Nu7ZcsWzps3r7xQo/y4urpyy5YtDSbwU9eDVr6j5s+fnzNnzsxubm4shODKlSvLfrS0fVOf8nmu0+k4ICCACxUqxEII3r17t9H1YxPsnjt3DrWeAeIIQl0AAIi1Zs2accmSJfn+/fsGyz5//swLFizgXLlysRCCbWxs2MPDw2CkrsJUsJsjRw55Mm7MqlWrOGvWrJwmTRpu1qyZ0YlazMXbt2+5aNGi8kTj77//Nrnu3r17WQjB7u7ufOTIEWaO/sTjyJEj7Obmxn/88ccPbbe52bJli+xj9eRR6hFOSu1WZSTf8ePHNa/x9OlTXrp0qVxn2LBhcpmln7So9zNfX19esmQJd+zYkbt168ZHjx7lR48eGaz7I4LdyZMny33enC/cqKn7cvHixdyoUSN2dnZme3t7LlSoELdt29YgvP6vwa6lCQsL41GjRsn9qmvXrsz8b6Bra2vL+/btM3jeoUOHuEiRImxjY8OJEyfWBJFqyi3bdnZ2mn3W0sXmwg1zZLDbvHnzWAe7Mf1b5mTChAn822+/8V9//RXleo0bN2YhBNepU8fkOuq+at26NQshuGTJkvzhwweL/6wxRX+SOeXYz5kzJ1eoUIHz58/PWbJkkSWqMmXKxOvWrdO8xr59+7hSpUqcIkUKTcCbO3du7tatm3yftfSAXP+i4j///MNCCO7Xrx8zm/5sjk2wa+xvAcCPh1AXAABiZeXKlfJLcKlSpTgwMNBgnXfv3vHq1atlzbjEiRPzli1bmNn4lzv9YDdPnjxyNOrTp09NtuXYsWPs6+trEbfFPn/+nIsXL665VU2ZBE4tNDSU8+XLJ0cnK/1v6kuzuo7k5MmTf07jEyj9Prl27RoPHz5cnsxVrFhR3p6uBLsBAQHcr18/zUieKlWqcP/+/blLly5cvHhxuWzgwIEm/5alUW/f+PHjOV26dJpZ293c3LhGjRq8Z88euZ5yUhxdsBtdsHPq1Clu1aoV3759+wdvVfxQ9+WgQYPkybGzszOnT5+ePT09Zchw8uRJTbhgKthdtWqVVQa7AQEBPG7cOLlf5c2bV/6+d+9eZjY+onH9+vWcM2dOtrW1ZSEE16hRg5csWcLXr1/nnTt38qRJk+TrDB8+PF62LT6o983Dhw/zzJkzuXLlyty0aVNesGCB5kKuer+MTbBriXQ6HV+5ckXuM9WrVzd5IZuZefjw4SyE4IIFC7K/v798DWOvy8w8bNgwFkJwhgwZLOZOhf9i79698vNn1KhR8ntiaGgov3jxglu1asVJkyZlIQQnSZLE4KLMy5cv2c/PjydOnMhTp07lFStW8PXr1w1K3liDRo0ace3atfnIkSMshODly5dH+5zogl0AiFsIdQEAIFaeP3/OPXr0MKihx/zv7MHMkcHuqlWr5MjbVKlS8d27d+V6+vSDXU9PT27fvr3RNljK6B79W1nVoUyPHj3Y29ubP378KB/79u0b63Q6njFjBidPnpyFEFy/fn0ZTCrL1TZv3iz7/8SJEz95ixIO9T62fv167tKlC5ctW5YzZswob7NUgl3lJFnZrz5+/MjTp09nOzs7GVKof3LkyMHTp083+rcskfp469OnjxyBX716dR46dCj37NmT8+fPL+tar1mzRq4fVbC7YcOGGLfhy5cvP26D4pH6+BwwYIDsiwkTJvCxY8c4MDCQL168yClTpmQhBGfJkoX37t2rucBjLNjNlSsX//nnn3LyH2sRERHBHz9+5KlTp8rReUII3rZtm1yupu7/bdu2cbVq1djJyUk+V3lvsLOzYyG0k/xYyueOKer3sdGjR3Py5Mk1F26EiKwfrp70VH2Xg7UHu8z/1lkvWrSowTL1vqe+OP7nn38aXUdtxYoVLITgjBkzygn+rJFOp+OgoCA5CWffvn01y9X72aRJkzhz5szyYs/Jkydj9Dcs/ThXO3z4sNwP8+XLx7a2tvJ7YnTHrDrYdXR05JkzZ2IySYB4glAXAABiTDnheP78OW/dulU+Pnv2bHlbtDLLOPO/wW7u3LnlqEelll5UwW5ISIgmgLTEE0KlXISxEwhlsookSZLw8uXLNcEuM/O9e/e4Tp06MsCoXLkyP3/+XLNOSEiIphbftGnTftq2JDTqPh08eLDsg8KFC3PlypXlxHrKT6VKlWSwq97XTpw4wdOnT+eqVaty9erV+bfffuOVK1fylStX5DqWuG+aMnLkSNlnK1as0OxzTZo0kctcXFyiDHbr1Kkj17106VKcb0dCMHfuXNkHW7Zs0exHSj8ro0izZ8/Oe/bsMRrsPnr0iNOkScNCCB43blycb0dC0axZM3mxQQjBPXv2NDnppPr9wc/Pj+fNm8deXl7s7u7ONjY2bGtryw0bNuSFCxfK9Sz9ODd14aZJkyY8adIkXrhwIRcrVoyFEJw+fXpNLeKogl1rqUWs7r/t27fL3w8dOsSnT582WC8sLIwbNGgg3wN27dpl9HWV70R9+/ZlIbQTd1qrhw8fsoeHBzs6OvLRo0eZWRuGq4/VsWPHyrsgBg0axMzafytrLWOhCAoK4unTp8vvkkII7tatW4wvooaEhMj60EII+e8BAHELoS4AAMSK/pdgpX5h9erV5a2ZPyLYVVjiqIk6deqwq6urycngnjx5wpUrV5bB7rJlywyC3cuXL3OFChU4ceLELETk7OzdunVjb29vHjlyJNevX99omQBL7E9TlFtchRC8adMmzW2rp06d4tq1a7OHh4cMxpXlxspeMLPB7OLW1Jfbt2+Xk9H4+Pholo0YMUJTl1AIwc7Ozrx69Wq5jn6wW7p0aW7dunWcbkNCcf36dS5QoAALIXjZsmWaZeqazpMnT5a1ybNly2Yy2PX397faetk6nY5fvnwp+0ypPSqE4I4dO3JoaKjJ56kFBgby7du3+ezZs3z79m1NaQFLD3TVxo4dK/tv7dq1HBAQIJe1adNGLkuaNKmmLIV+sNuyZUs52lkZNW3p9D8PZsyYIe+mUdfJV74f+fj4yImpnJ2dTU5meu3aNTkif968eT91G8zB/v37WQjB6dKl4zdv3jBz1N8b69aty0JE1mTXv/gNkSNup06dKi+I/fLLL+zn5xfj54eEhHC1atW4adOmP7GVABAVhLoAAPDdQkJCuHXr1uzp6cl2dnZco0aNHxLsWrIDBw6wu7u7HIFnKth98eJFtMHutWvXuFOnTpwhQwaDEgF2dnacLFkyzeg9a+rrs2fPctq0adnGxoZXrFjBzP9uv/L/d+/e5f79+8tSFuoRu0qooy6RYU0hrtrXr1+5devWbG9vz9OnT9fsR+rgfOPGjbx3714uXLgwCxE5A/mqVavkuupgVynFwmxd+yVz5C3aNjY2PGDAAH7//r18XD3pl1ID8siRI5w+fXpZikE/2NW/0GDpk/voU47Na9eu8eHDh1mn02mCyU6dOkUb7EY1Ws+aRvLt27dP1iHdtGmTZpn6YkO+fPnY3t6ekyZNqrmYoB/s1qhRg3v16hVn7U9olDtuhBDctGlTg8nTvnz5wlOmTJFzDyij7ZXRjnfv3uW9e/dypkyZWAjB9erVs7r3SmN27twp+8vX19fkekpfnTlzhpMlS8Y2NjYGdbYh0tu3b3natGny7pCGDRvGqnazuuwP9lGAuIdQFwAAYkwdGCgB14sXL7hXr15ych8Eu1ELCQnhuXPnyn7ImjWryWD3+fPn0Qa7AQEBfObMGW7UqBGXK1eOs2bNyrly5eIJEybw/v375XrW1MfMzBs3bmQbGxvOkiUL37t3z+R6Dx8+5M6dO8sRz+rJ06ytzxT6J7x3795lJycnLl68OD969Eg+PnHiRHlyvX79evlcJVSzsbExGewqLD0oN7YPdevWzeBWVaUWpzJCUvH27Vvu1q2bvJ09c+bMBjV2rZ1+H+tPnmYq2NWfFMmag57w8HDu3Lkz29ra8tSpUzXHqXok/s6dO/nChQtcpEgRFkJwihQpeNiwYXJddbCrfq+wtPfSmN5R9Oeff0YZ7H7+/JlnzZrFJUqUkOslTpyY8+fPz0mSJGFXV1cWQnDVqlXlv4ml9WVs+fv7c/r06TlRokQ8fvx4o3MJqD179kxOjqo/YZo1iOlFq7dv3/L06dNlsNu8eXMOCQmJ1d+y9M9zgIQKoS4AABhQvuipaxKqT/LmzZvHf/31l3zs1atX3LNnz1gHu+nTp5fBrjWcUOtPBqdMIvdfg1210NBQ/vTpk+Yxa/yirdQlzZMnj2Y0pDF+fn5yQhUl2DVWY9caGNveZ8+e8YgRI3jRokXysQ0bNsiTvyVLlmieGxERISdOU0bsqmvsWgt1X54+fVpzgrx79275+7lz5zh79uwshNBMwKfYtWsXCyFksJstWzbeunWr1e2bpj4jjI2kf/PmTZTBrrLu7t27uUGDBlY/wc+TJ084S5YsnCdPHs1FsEmTJsk+XLdunXxcXa89efLkJoNdZsv6/FGOOaXmqE6n03w32rBhg0F5mnnz5kUZ7H79+pWPHTvGHTp0MLjjpkCBAty9e3f5N6xtJL4xoaGhMgTPkSMH3759m5lN72e3bt2SEyAqI3Wthfoz4vnz53z27FnesWMHb926ld+8eSPfE5X30B8R7AJA3EOoCwAARm3YsIHr1KnD169f15yk9erVSwZf79+/l18GX758GatgN1++fLJMgDWdUP+MYNeSTpr/K6V/J0+eLG9ZDwwM1CwzZsGCBSyEkBOGVK9end++fcvM1tO/6u3s2bMnd+vWTf630hfMkfuuMjFV7969NbdeKiNIGzduzIkTJ5Yj+oQQfP78+Z+/EQmEel9TRuYuXLhQ04+KZcuWsRCCS5QoISdQZP733+P+/fucJk0abtWqFefJk4eFEDxmzJifvQkJijqcCAkJYT8/P7548SJfv35ds5469NIPdjt27Ki5wHPw4EG5bOXKlT9/IxKw4OBgnjx5smZU/datW9nJyYmFELx48WJm1r5HNGzYkIWInNDP3d1dU2PXkvn7+3PBggX58OHDzPzvsb5q1Sq5P927d0+zz0YX7CrOnDnD27dv56VLl/LmzZv5yZMnBiPKLZmpz2hlv1P64PTp07LOcKFChfj169cGr6E8Z9u2bezs7MzFixfXrGfp1PvLrFmzuEyZMrLOtRCC8+fPz126dJGhOIJdAPOFUBcAAAw8efJEfvFr1KiRDGeVQFcIoZnU43uC3ZUrV3Ly5Mm5cePGcbx18S8uRuxauwsXLsj6kIMHDzZZP1Pp54MHD7KTkxNXqFCB06VLx0JETrqkHq1uLdT1M9UjShV3797lxIkTs42NDe/Zs8foa7Ru3ZpTpEjB3t7eXLBgQe7cufPPbnaCpEyWJITgOXPmaE6OlVF+jRo1YiEEd+nSxehrHDp0iIUQPGrUKPbz8+PRo0fHVfMTBHU4MX/+fK5UqZK8IKgcp5s3b5brRBXstmjRgpcsWaIJ2fr27Run25NQqUcyh4eHc8eOHVkIwV27dtW8Dyr/Ht27d2chIidWUi6GGXu/sCQfPnzgihUryjuNTpw4wczMK1askPvTxIkT5frqz/Gogt3oAltruLCo/mwODAzke/fu8dWrVw1qu+p0On779i1PnDhR1sMvWLAgnzt3jt+9e6dZ98aNG5wxY0Z5nFvDHWHM2v2lX79+shxSlixZuFKlSpwuXTp5wSZTpkx88eJFzfMR7AKYF4S6AABg1KJFi+RsuM2aNeMWLVrIE5J9+/Yxs/ZLeGyD3ZCQED537px8vjWMQlFDsPtzPXv2TIY/v/zyiyZ8NHZit2fPHnZ0dOQxY8bwwIEDOXHixJwsWTL29va2mhNB5sh+sLOzYxsbG960aZPRkU2XL19mJycnTpUqlRwpqZ5Y7u3bt1ykSBHOlCkTv3jxgq9duyafa+nHuXLM6nQ6fv36NRcsWDDasKt9+/YshOAqVapoQgllvxszZgzb2Nhoau0yW8et2Or9ZeDAgTKccHd35xIlSrCzszPb2NhwqlSpeNSoUXJddd8EBgbKkftKGQslrBg4cKDR51i7p0+fsouLi0HZBbVBgwaxp6cn//nnn1y8eHHu2bNnHLcy7n358oXnzp0r70BImzYtDxkyRO5bkyZNkusaKwsSVbBrTZ8zzMa/PzIzb9myhX/99Vd2dnZmFxcX9vLy4smTJ/OVK1c0z3/w4AEPHDiQU6ZMKcPJNm3a8Lp163jDhg08btw4eYFWXZPYmvpZKUOl3I2g1Ll++vQpr1ixgnPlyiWX+/v7R1ljt1mzZrGaPA0A4g5CXQAAMGnNmjUGNd6UmmTGRo7ENthVWMMoFGP+a7Dr4eHBy5Yti7ZmrLXQ36/UdR/r1q2rmZhKKROgPEcZnXru3Dl+9uwZlytXjoUQXLNmTYveP/VDVqUfVq9ebfI5Fy9elPVdlXq6ahs2bGAhBNevX1/zb2LJ/cis7ctv376xn58fCyG4f//+zGy4fyr/PXv2bLazs+PMmTPz6tWr5YioiIgI3rJlCwsROSHV33//HUdbkjCo+0sJdJW6w0pfXLhwgfPmzStH7g4ePFg+Rx3ShoeH88aNGzlLliycKlUqLleuHM+aNUuz3JLF9th79uwZJ0uWjFOkSMFXr15l5n/ryDIzf/r0iStVqsQuLi4cFBRk0ZOiKZT98ePHj7xkyRIuWrSo5rvRvHnzDNZVINj918KFC/nIkSPMHLm96r5Zu3atpk+VWriurq5csWJFzWc4M/Pjx4959uzZMrw19lO3bl2rnGRu3759nCRJEhZC8LZt2+TjSn8fPnyYEyVKJL/nGPP27VueOXOmHOCxYsWKuGg6AMQSQl0AAIhSpUqV2MbGhm1sbLhMmTL8/PnzKE8QTQW7v/32mwx2reHEJaaUvoxtsFutWjV50nL27Nk4b3d80e+Lt2/fGtQpVdeAnjJliuynatWqGT0p2bZtGwshOGPGjLK+3N69e+Xztm/f/qM3I0FQH4dz587lq1evcuvWrTlVqlT89OnTKI/zTp06yf5ZsmQJ379/n69du6aZ7X358uVxsRkJTqNGjbh+/fp8+PDhGJ0IP336lHPkyMFCRNaArl27Ng8fPpxbt24t+3LChAlx0/gEaOHChUbL/jAzjxgxQi5TRpSZCnaZI/v66dOn/PLlS/mYpQc96u3bv38/z5kzh4cOHcrTpk3jwMBAzaRfimfPnsnyNT169DB4zY0bN7KtrS1XqVKFP3/+bHRUqiVS91GbNm3YxsaGbW1tOUmSJLJmeHh4uNHvOKaC3WbNmlnNBRul7nDy5Mn51KlTzPxvnx49elReLOzTpw+vXr2ajx07xvXr15ejxvPnz88HDhzQvGZYWBjfuXOHGzduzCVKlGAnJydOlCgRN2rUiKdNmyb3f2sbiT9q1CgWQnCvXr3427dvrNPpZF/4+vpy4sSJZWkFhbHj9+3btzxmzBij7wMAkDAg1AUAAA31CeDUqVPl7a7KCUiDBg34xo0bUb6GfrCbIkUKeRu8MmmVtYjJSe73BrtFihSxqprE6n1z3bp13L17d06dOjVnyJCBmzZtygsXLuRPnz4xs3ZU2dixY+X+6+7uztWrV+e5c+fy1KlTuWvXrga3zup0On7y5AlnzpyZbW1tef369XG7oXGsf//+8vb/PHnycKlSpUyuq+yH//zzD//222+y77JmzcqpU6eW/z1kyBD5HGu6iKOefCt//vxsa2srwwtj4aHSn3fu3DE52kxdIsDSQzN9Dx8+5NKlS7ONjY2crEsxbNgw2Udjx47l5s2by2B30KBBcr2oQltL3zfV+8uQIUNkkKP8FCtWjGfPns2vXr1iZu3IycmTJ8v+7N69O/v7+7Ovry97e3vL5y9cuDBetiu+Xb58WfZBmjRpWAjBXl5efOzYsSifZyrYrVq1qsGkf5YmPDyc586dy7lz55b9dvLkSbm8R48eLITQlFFhjtwnJ0+ezFmyZGEhBOfNm1cT7KpH4UZERPDTp0/52bNnBn/bWkRERPDHjx9lfykXFZX3utOnT8v3gZYtW8rnKd+ZXr9+bXD3l/K9itn6wnEAc4BQFwAAmJk1V/GZmW/fvs2vXr3iIkWK8L59+3jTpk2aYPfmzZvRvh5zZLCrfFnv3r37T92GhEbdnxcuXOB169Zx3759uVu3brxmzRo5skctNsGuuv6mpZ+0qLdv2LBhbGtrKydKUib8sLOz41q1askTEvWI3fnz57OHh4dc19HR0WRwxhw5oi9VqlQshOD58+fHzUbGg/fv33ObNm3Y3d2dEyVKxC4uLpw3b14ODAyM8uQtPDycz5w5w82bN9f0Y8qUKXnEiBGa9axJYGAgT5kyRTPLeM+ePWW5D2OUPnrw4AF36tSJy5QpwylSpOD69etrbum2tr5k/reESvfu3TX1HMeMGSP718fHh5mZDxw4wPny5ZOjdtXHtDX2nZq67muBAgW4aNGi8tb2NGnScK9evfjp06fM/O/nzNWrV7lFixYy2M2QIYN8/9QfEW3p4bi+x48fc9OmTXnEiBG8Zs0aWTvby8tLTp5mivpzXLmzIX/+/FZxwebTp0+8dOlSLlCggEGwmyVLFi5evLgsP6NMJMkc2WezZs3irFmzshCC8+TJowl2rf341hceHs45cuTgRIkSye+PzKYDXfV3pSFDhvCkSZMMJp1jtr7jHMBcINQFALBiR48e5Z07dzKz9kSjV69eLITgw4cPa77sLVu2LFbBrvKaz54908xObg0nL+qTjAkTJshRE8qPs7Mz29nZ8eTJk/nWrVua58Ym2DX1mCVRb1/fvn01QezmzZvZz8+PJ0+eLOvHFSxYUJ6QqMO0EydO8MSJEzlv3rycLVs2Tpo0KTdv3lwz2kxZf9OmTezs7MzZsmWTJRks1atXr7hPnz5yJnF7e3t5oh2TfWvr1q28ZMkSXr9+faxmdDd36r5R/x4cHMwTJ06U+2mpUqVkXdLoXkvZ/wICAjSvael9yWy4jWFhYbx+/XrOmjWrDG6ZWVPiQ7/286RJkzTvs9Y6Ylxt586dsj82btzIAQEB/OHDB75y5QoXL15c3sHQqVMnGewqzp8/r6lnLETkhFQjR46U61j6vqlfF1z579DQUGaOPGYXLVoUo2DXWF9t3bpVfs+y5M9ypd8+f/7Mixcv1gS7+/fv59KlS3PHjh0Nnqf0SXTBrrUe36YULlyYhRA8bdo0ZtaWXFAHuuqLt8qdJrly5TI6SSoAJEwIdQEArNSRI0dYCMHp0qWTwS4zc8+ePeXJ2/Hjxw2et3z5cpPBrvqE5+LFi3z58mWD0X6WfgLIrD0x69evn+Z27OrVq3OuXLnkLZtCCG7VqpVBX+sHuzly5NCMuLBGSjkQIQRv3rxZnlQz/xv2KjX51MGuuhQDc+RJ5ZcvXzggIEDzuLKvvnv3jitWrMhCRE5kY2zEiqVQjtdXr15xz5492cvLi4UQnC1bNr5z545mHVPPNcaSwwlm4+9j6gtgwcHBmoCxadOmcgRaVJQ+1el0mt8tnbo/lyxZIo/ZwMBAzaz3//zzDxcqVEhTLkX9/CdPnnCKFCk4WbJkcjR+t27d4mYjEgj9fVMZpbt27VqDdR8/fsx169ZlGxsbTpo0KXfu3JmfPHlisN6VK1d469atvHfvXk2ZAEv/PFcfexcvXuTJkyfzgAED2M/PT7Pe58+fecmSJUaDXeVYVvrqxYsXcqIwNWu4rd1UsJsyZUq2tbXlvn37atZTxDTYhcg+ioiI4FatWsnPnoMHD0Yb6H769Il79+7Ntra2BiUwACBhQ6gLAGClZs+ezWnSpGE7OzvOnTs3Hzt2TI7IsbGx4b1795p8rn6we+PGDc2X8EOHDrEQgrNnz87Pnz+Pi81JkCZMmCD7ae3atbIv3r17x7t37+aWLVvK5Q0bNjSYLEUJdvPkycNCRM4ErT+Sylr8/fffnClTJqOj8/744w/Zj+3ateP06dPL24yVQNbYSCjlIoTymE6n45cvX8pasRkyZJCT+1kyZftfvXrFvXr1kmUnqlatyvfu3WNm6wgWv0f9+vW5SpUq8r/1g131hYhWrVpZ9AWC76Xet5T6zvXq1TMaGPr4+LC9vT0XKlTI6Aj60NBQ9vT05LJly3KHDh1YCMGdO3f+qe1PSNTvb8uWLeNnz55x8+bNOXPmzPzq1SuDUafMkaVm9INd5XNG/f4Y1d+yROq+2r59O2fLlk0ey/Pnz5f7pzqoVAe7qVOnljV2lfDs6dOnnDFjRhZC8OnTp+N4ixIG/WBXKZkihOBGjRrJdWIa7BYoUMBgAkX4d+CGEIITJUrEQghu3bq1XK7+rGJmXrt2rRzoodSBBwDzgFAXAMDK6M94r4wE9fDwkF8A9+/fb7CuPnWwW79+fT558iQHBwfznj175OPWdDKt7+rVq5wjRw62sbHhdevWGV3n27dvmnICPXv2lBNS6E+e5unpye3bt4+z9ic0o0aNYhsbGx41apRm0o6RI0fK/tu6dSt//fqVR48ezZ6ennJ0tBKkRTUS6vbt2/znn39yqVKlWAjBGTNmtJiyC9GFL+rgRgl2kyVLxkIIrlatGoJdE7Zu3Sr3vSZNmsjHEex+n/nz58uLitOmTdNcEFT2PSWorV69usHzdTodX7hwge3s7Lhz58584sQJXrJkicFrWIPevXvLkKxQoUJco0YNo+vFNNi1NuptVsIuIQS3b9+efXx8DAIxU8FuihQp+NixYxwREcE3b96UQWSZMmWsYmSuKfrBbv78+WUf79u3T7OOmn6wmyNHDhZCcIsWLeKu8fEsutHx6jvmBg8eLPs1V65cJp+j/iybOnXqD20vAPx8CHUBAKyE+lZz9cnEsmXL2NPTk21sbFgI7czD0YVBK1askF8Es2fPLm+lE0Jw//79Y/w6lmjDhg2yHu6TJ0+i7IPu3bvLflPXjlS+mIeEhGhq9Fn6La/6wsLCuFatWuzo6Mjnzp2Tj8+cOVMzElpx7do1zUlidMHu8+fPuVGjRnL98uXLs7+//8/fsJ9A/0RYva/s27ePZ86cyW3atOG2bdvykiVLjE7W9/r1awS7Rugfd9euXeNJkyaxi4uLHG2vQLAbPfUI+U+fPnGFChXYzs6Ot23bZvI5w4YNk6GusVGnc+fOZSGEZoI5Zut6zwwICODatWuzi4sLu7m5saurK5cvX57Dw8ONTtinrn1fr149Gex26dLFaCkGa7Jr1y553I4dO1ZzXOvvU+qgcunSpVykSBH53AoVKnDKlCnl78rnkDUEu+rj9Nu3b/z582fN8k+fPvGiRYtkDVhPT09N6Qp96mB33Lhx3KhRI4OQ3VJE9Xm+c+dOnjRpEnfr1o1HjBjB9+7dk5PEKn106dIlbtiwoeazZ926dfzixQsODQ3lY8eOaSadVE8uaY3f2wHMFUJdAAAr0Lp1a+7duzc/ePDAYFmPHj00tUjz5MmjqbEbXYizfft2OYu2EIKTJ0/Oo0ePlsut6WSa+d8vwspkc5UrV4523cePH3OFChVYCMH/+9//ODQ0VBN4GHuOtbl7965msr0jR47IMgHe3t7MrL1lc86cOZrbDgsWLGiypum3b9/4wIED3K1bN54yZQq/ePHi52/QT/Dy5Utm1p70KoYMGSJr6ik/Tk5ObGdnx5MmTdLUyWTGiF196vexjRs3cu/evblo0aKcM2dOdnZ2lhfFlNuHmaMPdpUTcGuk7s979+5xcHAw29vbc7NmzaLcv9Qh2/Dhw+W6nz594o0bN7IQgl1dXY3Wg7cm/v7+3K5dO/nZ7OHhIT//o5psUwl2HRwcOEmSJNy4cWN++/ZtXDY9wXj69CmXK1eOhRA8aNCgGD1H2R+/fPnCmzdv5urVq8v91cXFhZs0aWK1ge7ff//NI0aM4LZt28pyCerjd/HixXKEc5o0aeRknVEFu+rPfEvrz48fPzLzv++V6uN28ODBsma48lOgQAEeNGiQQcmzU6dOcbt27eR6np6enCZNGi5YsCA7OTnJz65hw4bJ51jb93YAc4dQFwDAwikjl5ycnLhPnz4cFBQkl7148YLr16/PQgju1KkT58qVi4UQnDNnTt69e7dcL7oQ5+rVq7xs2TJeunSp/CLObN1fDEeNGiVD8sDAwChPOMLDw2UZhjRp0sRoQiVrN378eBZCcN26dfnVq1fycWWf27p1Kzs6OnK9evU4S5YsLIR2YiV9ERER/OnTJ7Md8VO7dm1OnTo13717l5m1x97QoUPlCV3x4sW5Xr16nCdPHlnbUbl9VX/yHv0RuzVr1pTBrjXRD8eVPitcuDCXL1+e//e//7EQgu3s7GJViqFly5ZWf6x36tSJvby8eNq0aZwiRQqeNWtWlOvrdDpZ+10IwXXq1OEWLVpoRtqPHTs2bhqfwN27d4/btGkjj9/KlSvLO3aiC3br1q3LQggeMGBAnLY5ITl16hS7urpyunTpDCZGi4ryfSkiIoLfvHnDs2bN4mnTpvGmTZvk+7KlBZDGqL83bt26lTNkyCAvtE6ZMkX2ganJ07y8vKIMdtWPWdqFxtq1a3OhQoU4ODiYmbX7i/rzvGjRolypUiV5wdbV1ZUbN27Mjx8/1rzevXv32Nvbm5MmTcru7u7y+Q4ODtygQQNevny5XNeav7cDmCuEugAAVqBp06YGt1Ypbty4IW81nzt3LmfPnj3GwW5Uo0atdUSpQhkp6ujoyGfOnGFm432ofIH29fVlFxcXTpo0qVVPLqdmap8LDQ3lvHnzshCCx4wZY/S5q1atkvXhZs6cqRmFYml27drFzs7OLITgQoUKyWBXp9Px3r172dbWloUQvGHDBn79+jUzR07Wd+TIEW7RooU8watXr57cVxVKsKvcOly8eHF+8+ZNnG9jQqCekG/Dhg2aC2SbN2/mJk2ayJHhUQW706dPl6+zatWqON2GhOTw4cMyjFAuvEyYMIGZow4Wrl27Ju8wUX6UQN1abx9W3iuVkYvKfyvBbtKkSdnGxoabNWsmj9+ogt3Hjx/z4sWLDV7fGih9oNQl/vXXX3/o61tDaGaqJnGnTp147969BqG2qWA3uhG7lkgp3SVE5GSlSrAbERHB+/btk5/nPj4+ctm1a9e4Tp067ObmxjY2Nly7dm2DYJc5cu4AX19fnjNnDm/YsIEvXLigKQVkDfsmgCVCqAsAYMHUX5xXr14tf9+2bZvJSaDmzZsnJ5/ImTMn79q1Sy5Tnzgy/3u7N7N1nUDHRGBgIBcqVIiFEFykSBF566upExOlPrGjo6PVhbr6JxKfP3+Odn8qX748CyF43LhxzMwGo36UOsVnz57VPM8SR0gFBATwlClTNLOB37lzh5mZx44dy0IIXrFihcnnK+GFEIK7d+8uT/KUfxcl2FWWWyNfX19OnTo129jY8Jo1a5jZ8D3v+vXrPGTIEBnsNm7cWC7TD3ZHjhzJPXr0iJvGJ1Dh4eE8Y8YMud8KIfj333+Xy6MKcQIDA3n58uVcuXJlzp8/P3ft2pWXLl2qeW1Lpr/vKbVyjd2qrQS7rq6ubGdnF+NgV2HpfWmK8r5YtWpVZo4sqRATgYGB8ndrCSJN2bNnj7y9f9y4cZp9S38/Q7Ab6cGDBzx06FBOnTq1HGGvXECM6vP8yZMn3KVLF3Z3dzcIdsPDw032nf73egAwPwh1AQAsnH6IVatWLVk/6/79+0bXiyrYVdY7dOgQZ86cmRcsWPCTtyDhie5LsDKatH///uzi4sKJEiXiVq1ayS/Y6tmJlf8fNmwY29ractu2beNgCxIOdWCwYsUK7tq1K5crV45r1arFmzdvlqNOFTqdjj9//sy1a9dmIQSXLFnSoFa0MpNzzpw5NeUCLPGkRTkxDgoK4smTJ3PmzJlZiMjJ4e7cucP9+vVjJycnGfKqqfuja9euMlhT1y5W1nnx4oVmEj9ru4ijjPzOmjUr379/X7P96n68d+8e9+zZU9Y7NDV52qdPn+TvlnihITpK/4WHh/P06dPl542p/c+UsLAwg4mXLD2EVG/fkSNHeMaMGVyrVi1u0qQJ9+jRg//66y+Des3+/v6xCnatmbLPKaFuhgwZ5IjI6Bw+fJi7dOnC165d+5lNNAuvX7/mKlWqsBCC+/XrF6PnmAp206dPz4cPH/6ZzU1QHj9+zEOGDOEUKVKwEIIrVarEQUFB3LlzZ06ZMiU/fvzYaPmJZ8+emQx2cZwDWC6EugAAVkaZuCNx4sQ8bNgwTSCmPlnUD3bVk6cdOnRInoArt8taC3Ufffr0ie/fv8+vXr3ip0+fGqz75MkTOaI0adKkXKdOHaMjpLdt2yb7c+XKlT+1/QmJ+iRjwIABmtuphYicdO9///sfnz592uA5fn5+7OHhwUIILlGiBM+cOZMXL16sqTc3ffr0ON+muKLUxtTpdLJPAgMDNcFuvnz5uFy5cpwvXz6Tr6M89+XLl1ypUiUZlL9//97kxQtLD83UlG1XRioXLFgw2pPj06dPc+7cueUINVPBrvr1rYV6e5X9KDw8nKdNmyZrumfOnJkPHjxo9DnWTn3sjRgxgpMkSWLwvpkoUSLu0aOHQSmV2I7YtVbK/rZ7925OmjQpJ0qUiGfOnGlw8UDf169fZRC8fv36uGhqgnblyhV2c3NjDw8PgztmoqIOdpcsWcKFCxdmIQTXrl37ZzU1QdIPditUqMD/+9//uEqVKkbXVwe7Xbt2RbALYEUQ6gIAWAn1lzmljmaiRImiDXZz5szJQghOkiQJDxkyRE4AJoTgPn36xOk2xDd138yePZtr1KjBjo6OnCJFCnZ3d+fOnTtrJpxgZr579y4XLVpUE1ROnDiR165dy8uXL9dM+qOu+2pNQcbIkSNlH9SvX587d+7MhQoVkrexZ8iQgY8ePcrMkf2ijGxcu3atnPRDqSmrBGnqCX4s7USmffv23KBBA4MRysz/BrvKJGiJEiViNzc3vnTpUpSv+e3bNx48eDALITh16tRWWzdXn3IcTp48mYUQnDt3bjm5WVT7lbJPK7VemzVrJpdZUyge3bGnHMvKiF2lFEO+fPn40KFDcj1rej80Rd0H6otgHTt25FmzZvH8+fO5QYMGsoxPtWrVePv27ZrX0B+x27JlS3msW2Mfq++a0d9XHz58yJkyZWIhBJcpU4ZPnjxp9NhVnn/27Fn28vJiLy+vWIWYlkbpjwkTJsjJvL7X58+fedasWdy6dWuzncT0v1CC3eTJk7MQkRMe58uXj4OCgoze4WEq2K1bt67RGrsAYBkQ6gIAWBH1l8BmzZqZDHbV6y1evJhLlixpMBpo8ODBch1rCCnUJ3z9+/fX9IUSKKpPstX19+7fv8+NGjWSsz8rQY8QQk56MXToULm+NfSn4ty5c3LE7Y4dO+S2f/z4kSdPnsz58+dnIQSnTJmSjxw5onnut2/f+OTJk5wvXz5Oly4dCyG4XLlyPHXqVLmOpfWlMgGfq6srN2zYUDNZl3JCpwS7yv7m6Ogo68Aa6w9l3z5//jwnTpyYHR0d+fr163GwNebjwIED8pidNm2afFw/CFOXp3Fzc+MqVaqwi4sLCyE0NXStIUBT72uPHj3igwcP8rx583jTpk184sQJo+vPmDFDTpqGYNe4WbNmyX1xx44dBv3SuXNnuXz06NEGz1eC3aRJk7KtrS1Xr16dP378GFfNj3f6/aX8t1KXWG3fvn3yQmGlSpX48OHD/OHDB4PXuX79ugyAe/fujX2VmcePHy/vbggLC4txTeInT55o/vvr16+yP62xVI0S7CZLloyFEJwiRQr5+RzVRQYl2FWeV6ZMmRiXEQEA84JQFwDAwpkKHZijDnbVXxaPHTvG/fr1Yy8vL27SpAkvXLjQ6HrWYOrUqZpge/ny5bxhwwbu06cPZ8iQQYa0jRo10kyY8vr1a96yZQvXqVOHM2bMyMmSJePkyZNzx44dNZPYWXp/6p+UKbVKvb295WNKyPj582devny5vP1SP9hV1nv37h2/evWKb926JUdRMltmX7548YIbN27MQggeMmSIZpmxUgxKQObh4cE3b95kZtOjJ9evXy/3bWM1eK1ZUFAQ16xZk21sbDhfvny8f/9+ucxYgLN582YZAA8bNowdHR3ZycnJamqQq4+9yZMny9qY6p+2bdvy7t27Ne8JCHaj9uTJEy5evDgLIeRdIREREfKYvnDhAidOnNig7Ic+f39/bt26NQshuGfPnnHS9oRA/d537tw5njFjBleoUIErV67MlStX5tWrV2vq4UZERPC8efPkhdhixYpxnz59+O7du/zq1Su+cuUKL1iwgNOnT89CCP7tt9+MTlZnTZRjdOLEiSyEYE9PTzn5a3TH76lTp7hx48by/dVY3VhLpb996v1HCXZTpUrFQgguXLiwDGijCnafP3/OXbp0MbioCACWBaEuAICFiSrIMjbaIabBLjMbXOW3xNBMn/LFWqfT8fPnzzlv3rxsa2trcFsrc+SkNR07dpQngM2bNzf6mo8fP+YHDx4YjEixhv5U9OzZky9cuMDLli1jIQRfuXJFs1w9eko/2FUmTFGXYtBniSeAyv7x4sULTe3lFStWyAnljAW72bJlk6UDlLBWvV8rfTV27Fi2tbXlKlWqcGhoaJxtV3yLal9Rn1jPmTOHbWxs2M7OjuvWrcvHjh2Ty/RvDR4yZAjb29vzuXPn+N69e7JecaNGjSy+b9V91rdvX3lHQvHixblBgwZykkMhBBcqVIhnzZqlGSVpLNi1pkmSonL48GEWQnCuXLn44cOHmkD39OnTMtBt2bKlfI5631Qf77dv39ZcULT0EFJ9nG/YsEHWKtX/KVKkCC9ZskSu+/btW168eLEcsatcJMucOTO7uLiwg4MDCyG4Ro0amnIi1krp53/++Ye9vLxkqS79yfv0hYeH87Bhw1gIYTUXvxTqY+/Fixfyu7b6+83jx4956NChnDp1ajlyXLlTJ6pg98mTJ7xx40ajfwsALANCXQAAC6L+YrdlyxaeMWMGd+zYkdeuXStH6SnUJ3pRBbvqk0BrGjXBrO3PN2/e8I0bN9jR0ZG7dOmiWU/dlzdv3uTevXvLYFddJxdfpiMp9UmdnZ25bt26mom8jO1jUQW7+s+xROr9UP/krWPHjiyE4Hbt2snjNqrJ0zJkyMB//fWXwa2wW7dulYHFjBkzfvIWJRzq/vz69SvfvXuXr127xv/884/R9bt37y5LqFSuXNnohEjKxIdZsmTh+/fvM3NkGRulf0+ePPlzNiaBGTdunNzmjRs38uvXr+WyM2fOyPq5iRMnlhfJlP1WHewqo6N3794dH5uRoCjlV9Q1mplNB7rKcR4cHCwvnKnryCqsKYRct26d3C9btWrFc+fO5aNHj/LAgQPliHJ3d3cePny45nknTpzg8uXLy1G5ys///vc/Hj58uOxDaygRoN5/Xr16xXfv3jX4THn16hWXKVNGXphZs2YNf/r0yeD5yu/nz59nLy8v9vT01Fwws3TqY2/t2rVcs2ZNTps2rcF3duZ/g92UKVPGKtg19rcAwHIg1AUAsBD6NV/VdVudnJzYw8ODN2/erPlSF1Wwq4QREBnkNGrUiCdNmsR2dna8aNEig3XUX54vX77MtWvXZltbW86fPz/qk6qEhYXx2rVr5S3ENjY2nDhxYr5w4YLR9U0Fu15eXlYxeq9fv368bds2o5PEvH//nitXrsy2trbs7u4ebbCrhGguLi7cqlUrnj59Os+cOZN///13OQpt4MCB8vWtKSxfunQpN2/enN3c3NjV1ZWTJEnCFStW5JkzZ/KzZ880z+vQoYPcd+3t7bldu3Y8a9Ys9vb25h49esj33cmTJ8vnPH36lLNmzcp2dna8ZcuWONvG+HL06FEZPGzevJmZI/tb2aeuXr0qaw3rlwlQB7szZ86UFyQmTJgQtxsRj9Sf5+rjcMaMGfI2f0VMRugqkyBaywUFU44fP86urq4shODx48cbvMetX79e1iDNnTs3f/r0SXNhOzAwkP39/XnlypW8detW3r9/v8WX/NGn7rOjR49ygwYNOFWqVDx9+nQZ2ir++usvtre3ZyEEFy9enJcuXWq0ruu1a9dkTeJu3bpZzQVw9f4yduxYtrOzYwcHB/bw8NDUbleLbbALAJYPoS4AgIUZM2aMDBzKli3LhQsXll+WhRA8c+ZMzZdqU8Hu8OHDEewy88aNG2WflClThh0cHGRN4ahG5ChlBYQQvGnTprhqrln49OkTb9u2TQa09vb2vHTpUmY2PppZP9gtVqyY7Nvbt2/HadvjknLres6cOXn//v0Gt1EzR46Gatq0Kdva2rKbm1uMg13lR7kFuVixYjxr1iz5+pZ+cqjevoEDB2omLXRwcJAXxZImTcolS5Y0qDH8xx9/aN5XlecqP4MGDdKsf/v2bXZ3d2chBC9btixOtjE+zZ49m21sbLhFixYyGFP2RV9fX6MhpLER6eHh4TxmzBgeNWpUnLY/Phi7dV8Z/agc+ytWrGAhBKdPn551Oh37+fkZ7Uv1Z9OtW7e4bNmyLITQ1Ce2JhEREfzt2zdZX7Rbt25ymdJXwcHBXLRoURnoqmvix4SlXwRj1m6jj4+PDMBTp07NXbp0MXoxYvv27fL9MVu2bNygQQO+ePEi3759m8+ePcszZsyQE53WqFHDamoSq7evT58+8rNj4sSJmrrOxjx58oSHDBmCYBcAmBmhLgCARblw4YIMDrZt28bv3r3jz58/89GjR+XkSsoIMuULILPxYNfJyYl79uwZ6xMbS6SMvlNOTLp37y6XmZpJW6fT8S+//MJCCO7Vq5fRda3Zp0+feOvWrfIkOlGiRPzXX38xc/TB7rJlyzh9+vT8+++/x2mb49q5c+c4R44cLITgHDly8L59+zTHqnLy9urVK27cuHGMg10ljMyQIQNv3bqVg4KCNO8H1nRSOHToUPm+OHLkSPbx8eE9e/bw0qVLOWvWrHI0aapUqfjWrVua5x48eJDHjBnDWbJk4YwZM7KHhwc3bNhQUw9SqRW7fv16dnZ2lrVQLdnXr1+5QoUKLISQFwqiq/uqhJfquptK2KZ+37TEffP06dNyuz5//iwfb9OmDbu5uWn65M2bN5w9e3YWQnDVqlVlX7Zo0UKuo3+xUZncs0GDBvzu3bufvDUJ19u3JJIrMAABAABJREFUbzlt2rQshOB9+/Yx87999fr1a/lZlC9fPvl+qBy/6n8Xa/0cV2/36tWr5ftm586d+cqVK3IfNtY/e/fulfuqEIJdXV3Z09OT7e3t5QW0WrVqWWVN4hEjRmjK1Ki//+jfoaPuW/1gt0qVKnK/tdZ9FMBaIdQFALAgK1euZCGEnORD/SU7KCiI27RpE6tgt0+fPnG7AQmM+uS4a9eusu/c3Nx4165dcpmxL9A6nY5LlSrFQghu06aNyfWsmRLsKqUYnJ2dZRmGqILdL1++yACY2bJPAK9cuSInOvsZwW6aNGk4KCjIaN1sS7dmzRp5TO/YscNgub+/P/fo0UPW0MyWLZum3rgiICCA379/zy9evNC8Zyi/h4SEyJCzZcuWFh+sff36lUuWLMlCCF68eLF8PCZlApo0acLt27c3+rqWuG/u379f3pquDg579eol901fX19mjnxPDA0N5T59+rCTk5Nc3rhxY/k89YRzzJG19ZU7d9auXRs3G5UAGNtXbt++zY6Ojpw1a1bNPqcOdPPmzSvvZFKvc+jQIX769OnPb7gZ2LFjh9z3Ro0apdnnjJUJUly6dInbtGkjL0ooJX+qV6/OY8eOtaqaxIodO3awm5sbCyEM6rPr78PqMh8KJdhVJqQrVKiQxU/ECQCGEOoCAFiQUaNGcZIkSfju3btGQ7H379/HONhdsWKF/N0ST6ZjSh0YKsGunZ0d161bl8+fPy+XqfsoIiKCnz17xgULFmQbGxujNXgtWUxum1T6Swl2lVHNMQ12Y/O3zN3ly5d/SrDr4uLC7dq1i/sNSiA6d+7MNjY28uKVOthWfn/58iUPHTqUU6VKxUIIbtq0qcHJtf6xrz+JUM2aNVkIwRkzZjQaCluaiIgIrlu3LgsheOzYscxsOtBVBzinT5/mpEmTshDC4kczM0denJo4caIMaCtUqMDM/5YDsbGx4f379xs8z8/PT07o5eLiwn369DG4sPX27Vteu3atJnxTWPrnufozQX2n0blz52SfXb16lZkNA13l+5B6v9yzZw8LIXjIkCEGk4FZm3v37smLsFHVX3/37h2/evVKMzkic+SI56CgID5w4AAfP36cT58+bfSzzFqMGDGCbWxsuGHDhvzx40fN53RYWBi/efOG+/bty9WrV+dUqVJxhw4dDC5AKsGuEMLkBTEAsGwIdQEAzJD+F9/Pnz9zREQE//nnn+zp6Rnlc6MLdvVH+ljTqAlT1P3dvXt3FkKwo6Mjt2jRgk+dOqVZV/lCrpxQe3h4WMWEXgp1X126dIk3btzIo0aN4nHjxvGNGzfkSbb65CW2wa41unLlihzhlD17dt67d6/mWFX6/fXr19ykSRNNsKvUxlb3+Zs3bzT7pTX1c0REBAcEBMgJk+bNm2d0PSWoePbsGdepU0eG6kod56jCsZs3b/Ly5cvliNWMGTNadP1nfePGjWMhBCdPnpznzp0r+9pUoBsWFsaDBg1ie3t7TVhk6Z4/f85Tpkzh5MmTsxBClgcQQsi7QYztZydOnNDUdM6VKxdPnz6d169fz5MmTeJGjRrJZf3795fPs/TjXN1Xy5Yt49q1a/O5c+eYOfI9L3PmzOzq6sq+vr4cFhbGRYoUiTLQDQkJkaOmR48eHbcbkwCdOnWKkyZNylmzZuUbN24w87+DAXQ6HQcEBPC0adO4TJky7OnpyUWKFNH0W1TfJy39YoO+L1++cJkyZTQlupTP8efPn/OMGTPk/AFKiQpHR0fOnj275k4xZuYHDx7wzp075X9b+nEOAFoIdQEAzIw6NFuwYAG3b9+eixcvzpUrV+ZOnTpxmjRp+Pnz58xs+oudfrA7depUTbALhtT9rtTYdXBw4BIlSvCiRYvkrM9PnjzhVatWyb4dPnx4fDU5zqn7aPLkyXJ0qfKTLl06btOmDV++fJmZEezG1o8OdvWfZ6mMbV9wcDCnTp2anZyc5MgnY4GDEjT4+fmxg4MDCyF4zJgxJv+WEmyUL19ejrYsV64c+/v7/6CtSVjUI5PV+9aVK1e4UKFCmkBCPSpc/+LhunXrZAh88ODBuNuABCA4OJjnzp3Lzs7OctTu7t27mdmwn9TOnj3LFStWlJMd2tvby/daOzs79vLy4gkTJsj1Lf04V9u+fbvsi/nz58vvNzVq1JCfRcpoZ2OBrrIfHzp0iD09PTlHjhx85cqVeNmWhGTixImyFI3yPZM5MthdvHgxV6tWTfOZrxz7w4YNi8dWJ0xfv37lSpUqsRCCK1euzDqdjkNCQvjChQtcunRp+V6QLVs2Hjt2LDdo0IAdHBzYwcGBO3bsyF+/fjX63ciajnMAiIRQFwDAjKi/wA0aNEhTl0w9kdf06dPleqZGP+gHu8OHD0ctrmgYG7Gr/OTJk4dz584t62/qB7qWHkyqt69v375y3yxdujR369aN69SpI/smd+7csk5kVMGuq6urDHatbRSPKd8b7Hbo0EEGu9ZEfcwuX778/9g767AqmreP75xzSAEB9bEbW2wxsAtMTOzuLgzs1gcTRbFbVBCwW7GxHxsLC4MQUUmJ833/4N1x9xToT8Kz87kuLvHs7J6dm9nZme/cc990QSEuLg4lS5YEIQS9e/fW+XwmJiYiJSUF9evXF3lVaUOpVCIgIADdu3fHokWL8PHjxz9TmWxAevuxpKQkTJkyhQoTBQsWpLZXFSp9fX1FO0ekCO9Zy7/DmzVrRj0gdXk3vnz5El5eXmjcuDFsbW1RpEgRlCpVCosXL8bp06dpOSkJPS9fvoStrS0IIZg5cyaioqJo/a9evQobGxuRhzOParsMCgpCsWLFaKgB9g5KDcvF7zw4fvw4Xrx4geDgYDg5OcHExAQKhQKFChWCm5sbpk6dSmOJW1lZieLgM1I5ePAgcubMSePhVqlShfaZ1apVw5IlSxAaGkrL82P2cuXK6X1sdgaDkX6YqMtgMBh/If/++y+dlAwdOhSTJk2Cg4MDTExMQAiBpaUl9u7dS8vr8tjt06cPCCEYOXJkZt3+X41wcjxixAj6dzAzM0OFChXQpk0bTJs2Db6+vhrP0UeEk90ZM2ZQm2zatEkUG7Nt27Yir11dwi6fZI4Qgrdv32ZqfbI7vyrsGhkZwdzcHB06dBDFmNR3hO1y3LhxNCbumzdvoFQq0a1bNxBCUL16dVy/fj3N67Vp00YUQiCt5zo2Nlanp+XfhrC+Bw8exOLFi9GkSRN07doVixcvxsWLF0Vl4uLi0LFjR7qroXjx4li/fj3u3r2L+Ph4HDp0CK6urvQ5d3Fxoefq+yKYkM+fPyNXrlwghGDgwIHU87ZRo0a/lDwqOjoaUVFR+P79u+hzfbelav0CAwNhYGCAwYMHq5WNjIzE1KlTYWVlRRdjw8PDRQvaX79+xcWLF2l4i9atW9O/g77bMi0+fvxIhe5ixYqhUKFCNGRIoUKFMGvWLJFH8/79+2Fubg4jIyMEBARk2X1nV8LCwuDm5gYjIyPaDxoZGaFHjx54/vw5TZ7Ix3JeunQp9d6V0rucwWDohom6DAaD8Rcg3N764cMHlC9fHjKZTC1hwr///ovy5cuDEIKSJUti//799Ji2yci3b9+wc+dOte9iaEdT8jRDQ0OMGjWKxu/jkdIkcP/+/XS7pVDUBoBZs2bRSUvRokXpJJCPSawq7B44cAAlS5ZE9+7dM70efwO/KuyqxtaUEp6enrTtbd68mW4bPnHiBP28T58+WifJKSkpCA0Npdu1hUkkpYLqLhF+AVH4U6xYMTg7OyMmJoaWjY2NRZ8+fZA7d25aztzcnApmMpkMcrlctKtB3xfBNNXv5cuXuHHjBhISErBkyRIaY1eXsMu/q1nc+1R8fHxw/PhxLF68WBTCQnVMExwcLBLP//nnHwwaNAjLly/HihUr0LlzZ2r/5s2bU/vqe7tMC77+Dx48EMVztra2Rp06dfDff//RZ18YhoX3RD158mSW3Xt2JiEhAVevXsXUqVOxZs0aHD16VHScb78JCQno168fZDIZJk+enBW3ymAwsilM1GUwGIxsjnDClpCQgNu3b8PAwIBOgpVKpWiysWnTJlSoUOGXhF1N38XQjSaPXWNjY/Ts2ZOGDACkI5LHxMTA2dkZBgYGWLVqlVbv3Z07d2Lbtm10C2yhQoVw8eJFAGJhNzY2Fvfu3aPXkPqEWhPpFXY/ffqErVu30s/1vU3ybUipVCIhIQFNmzaFXC6Hn5+fWtm5c+fStjl48GC8fftWY1vbu3cvCCEoXry46PmWGvyzzMcKbtu2LfVg5mO62tnZiZLCxcfHw8PDA506daK25sMG9enTB3v27KFl9f05F76Dd+/ejejoaADiZ1I1eZo2YZc/hz/Gh2uQIvv27aOhfQYNGoRcuXLhxYsXADSPe16/fo3Zs2fT/lP1J2/evBgwYAC1NxsbpcK3ufDwcOzduxcbNmzAxYsXRQs5wE+bb968GUZGRqhfvz7zLP1FVNucl5cXCCGwsLBQc+hgMBjShom6DAaD8ZfQv39/jBkzhooLBw4cEB0XTlz+F2GXkX40JU8zMjJC3759cefOHXpM30U0IFVg5GNBvn//nn6+cOFCOlH28vICkBr2g/dw1iXs8rA2q530Crva/q9vCOv36NEjBAcH459//oGzszOSkpLUnsVXr16J2qKTkxM2bNiAyMhIJCcn49WrVzSOJCFElHhKapw8eZIKt97e3qLkmufOncOAAQOoR2716tVFiZR4u9+6dQsXLlzA1atX8ezZM9H1pfScjx49GoQQDBkyhApiQhHn48ePWoXdxMREas/Dhw/D1tYWX79+zfxKZCGqbeXatWvInz8/3TVDCMHx48d1XiM6OhrPnj3DwIED0bJlSxQuXBhVqlTB1KlTcfz4cfodTNAVo+0dovr5gwcPaBz9mTNnZsat/dUI301CW6akpGD//v30HaQrUSeDwZAmTNRlMBiMbIpwgOfj40MHdI0bN4alpSWePHkCQH3wx8OE3cwhvcKuvhMcHIzBgwdjw4YN9LOdO3fSdrtlyxYAP+0VGhpKBQs+JAMfY5fxa6gKu8ePH9erWK6/w8CBA1GtWjW4ubnB0NBQ50T48ePHmDhxoig+dvHixVGvXj2UKlWKfj5p0iR6jhT6UFWRZtWqVTSEBSD2iAZSvR8XL15Mn+uGDRumuXVdGFpIKnz48AFNmzaFiYkJTE1NdQq7bm5uImFX+FyfOnWKJlZbunRpptcjqxC2FW9vb7ogeOvWLRrvVaFQoF+/fggPD0/3dWNjY9W8naXwnP8JhH+TpKQk3Lhxg4ZoaNOmDX3+pfSc/wkCAwMxbdo0yccdZzAYumGiLoPBYGRDNE2Ax48fL9oeOH/+fI3nahN2S5cuLRJ2GX8ObcLugAED0pWASV8QTqDDw8Ph5OQEQggmT54sEit4YaJJkyawtLRE2bJl6fbt4ODgTL9vfUBV2PXz89N7r1xtXL9+nfaTtra2MDIywr///gtAPcM9T1RUFDZv3ozcuXPTJEp8mICKFSuKRDMp2FUovqxcuRIHDx5Ejx49kDt3bjx9+lSrOPPhwwfMmDGDxtHU9p6SOg8ePEDXrl1hYmICIyOjdHvs1q1bF5s3b4abm5tGoUdK8NvRzc3NERQUBCBV2OXFxKJFi2L//v06F7iE7Vi4S4SJj7/HgwcP4Obmhnz58oEQAgcHBxaT+DcICwvDhAkTYG1tDYVCgRw5cmDx4sX0OLMlg8EQwkRdBoPByGYIRdmRI0fSTOuAWNht06YNncjousamTZtQqVIlOvm5e/duxt28hNEk7BJCMHz4cJq5WErcu3cPpqamMDc315r1ulWrVihatCiWL1+OQoUKYeDAgZl7k3qGUNiV+hbNHTt2wNzcnD6HzZo1o8d0CTaPHz/GmTNn4Orqirlz5+LQoUN4+PAhPS61yTQfmqJ79+6oWbMmChYsiO/fv+s85/79+/Sd4+TklDk3+hfy4MEDdOnSBaampjAyMsLgwYM1CrufPn2Cu7u7WngBVe9xKYUJuHz5Ml04GDt2rOgZvXXrFkqUKAFCCMqVK4eTJ09KOt5wZsDHzTYxMYGJiQkUCgWLSfw/8OzZM7Rp0wYmJibo1KkTvL296TGpvYMYDEbaMFGXwWAwsinC5FK+vr4AUmPpCbcJT5w4ER8/ftR4vqqw+88//2DkyJGZcu9SRTjY7tevH4yMjGiYjL8dbVv9tAlkx44do4ml3r17J7pGSkoKPn36BBsbG1SrVg3v37/HlStX6Lls0vL73Lx5U9KCrrCdbtu2jQq7OXLkwJo1a+gx1XabHs88KW53XbRokSgsRcGCBek7R5c9PDw8qKczW0jUTnqF3W/fvuHcuXOoVq0aihQpgiZNmojas773maphOvjxkbZYrbdv30bJkiWZsJtJxMfHY9u2bZDL5WjWrBk8PT1p/6DvbTOjuHv3Lq5cuSIa40vxHcRgMNKGAADHYDAYjGzFyZMnOScnJy45OZnbv38/17BhQy5Pnjwcx3FccnIyN23aNG7ZsmUcx3Gci4sLN378eC5//vxq11EqlZxMJuM4juOuXbvG1a1bl+M4jktJSeHkcnkm1UZaCG0bGhrK5cuXL4vv6H9HWKfAwEDu3bt3XHJyMle6dGmuSpUqnIGBAcdx4vZ2+vRpztHRkTM1NeUOHjzINWvWTHTNPXv2cL179+b69u3Lbdu2jX4uvAbjfyM5OZlTKBRZfRuZjrANbd++nRs1ahQXFxfH1a5dm3NxceE6duzIcRzHAeAIIVl5q9kWoW1Wr17NTZo0iUtKSuI4juMmTpzILV26VK0cx/3sK86dO8d17NiRS05O5q5fv87Z2tpmfiWyENVnT9ez+PDhQ27+/PncsWPHuJSUFK5Pnz7cypUruRw5cqidFx0dzcXGxnKGhoactbU1x3H6/z4XtrEHDx5wtra2nIODA/fkyRPu1q1bXP78+TU+y3fu3OG6du3KvXr1iitbtiy3cuVKrkmTJvR9xfizxMfHc8HBwVzu3LnpuEff22ZGoO29xN5XDAZDG2zWxGAwGNmAlJQU0f9v3LjBJSUlcVu3buU6d+5MBV0AnEKh4BYtWsRNnjyZ4ziOW7ZsGbdy5Uru06dPateVyWScUqnkOI6jgq5SqdT7QXZa65W8TTICuVxO/576IOgK28vUqVO5tm3bct27d+d69+7N1apVixsxYgR39OhRjuPE7a1FixZcs2bNuLi4OK5Lly7c2bNnufDwcO7Nmzfcli1buN69e3Mcx3HNmzcXfR8TdP8c+izo6nqGZTIZFSD79evHrVu3jjM2NuauX7/OeXh4cP7+/hzHcRwhJM2+QqoQQqiNx4wZwy1ZsoQzMjLiOI7jjh07xh04cICWE9qQ7ytiYmK46OhoLikpSXJCBP+e5jiO27lzJ8dxqc+i6nuex9bWlps5cybXunVrTiaTcXv27OHGjRvHxcTEiM5TKpWcubk5ly9fPiroAtD79znffrZu3cpVq1aNmzJlChcbG8vZ2trSxWxNbax69erc/v37uRIlSnBPnz7lxo8fz50/f572DYw/i4mJCVexYkU67pFC28wItPWXUutHGQxG+tHf0T6DwWD8JQgHvitWrODq1avHffz4kcudOzfXqFEjkdcZP6hTKBTcggULOI7jODc3N+q1q8ljV1Uk03fRTOgZEhUVxb169Yr7/v07Z2JiwuXNm5crXrx4mjZQ9S75Ve9RfZrI8PWeMWMG5+bmxhFCuLx583JWVlbc06dPua1bt3KBgYFcaGgoN2jQIE4mk3GJiYmcoaEhN23aNO7r16/c7du3ufbt23MlS5bkEhMTuWfPnnEcx3Gurq5cjx49srJ6jL8Q4fP55s0b7v3791x8fDyXkpLC2dnZcRYWFpyBgQFth3369OE4juOGDh3KXbhwgYqQHTp0oKIkmzCnolQqOUII/eFtPX78eI4Qwk2aNIl7+vQpt2nTJs7ExIRr3bo1RwihtuZt+eDBA47jOK527dpcvnz5JGVjvp5jx47l1qxZw124cIHbunUrXfDT9H6wtbXlpk+fzkVERHAXL17kfH19OY7juJUrV3JmZmZa30FSsemHDx84T09PTqlUcl5eXlxkZCRnZ2fHKZVKTqlUal3A4oXdrl27ck+fPuUmTpzIrVixgmvUqBFnaGiYybWQFvrcNlU96NkOIwaDkaVkarAHBoPBYGhl8uTJIISgUaNGqFixIqpVq5bmOUlJSZgyZYooaYq2GLtSQBi7bdWqVWjQoAG1DSEERYoUweTJkxEREaEWo49HGMfwxIkTNA6flLNhnzhxAnK5HIQQ7Nu3Dy9fvkR8fDwWLVpEE9IUKFAAnp6eovNiY2Nx+PBhtb+DhYUFpk2bRsuxmHuM9CJsKwsWLEDlypVFbatmzZro06cPwsPD1c7dsWMHjI2NaT/r5+dHj0n1+U5PjMYfP37Q393d3SGTyUAIQf369bFu3Tq18gcOHKB/j2XLlv3R+/1b+PDhA5ydnZEjRw4QQtC/f396TFd/d+7cOVEM46FDh9IYu1JtozwnTpxA06ZNoVAoQAhB+fLl8fXrVwBpv0Nu374NGxsbEEKQK1cuXL9+PTNumaGHCPvMLVu20N+l/nwyGIysg4m6DAaDkQ2Ii4vDsGHDkCdPHhgbG8PMzAxlypRBaGhomlmDVYVdFxcXhISEZNKdZx+EA20+mZxMJkOhQoXQsGFDKj4SQtC+fXtcuHBBZ+KUHj16wNLSEkuWLJG86Lhw4UIQQrBjxw61Y3v37kXNmjVBCEH+/PnVhF2lUono6Gi4u7tjzpw58PT0xJkzZ+hxqduWkX6Ek2YXFxf6PBsbG6NQoUIicbd8+fIICAhAQkKC6Bqqwq6/v38m1yL7IHz2Ll26BE9PT7Rp0wadO3fG/PnzcfjwYXpc2FcKhV0DAwM4ODhg5syZmDt3LpydnenfYMqUKfQcKQoeDx48wLBhw9It7PKf1a9fH5aWlrCwsIBCoYCzs7NIWJcawrZz8uRJNG7cGIaGhiCEYPDgwfRYWgsUd+7cgZmZGQoXLpzmuEqf0PbssaRb/xvDhw/XOi5iMBiMzISJugwGg5FNiIqKwtSpU5E/f346KT5+/DiAtCfESUlJmDp1Kj1PykLFrFmzqB127tyJly9fAgCCg4Nx+PBheqxChQq4d++exmucOHGClmvQoIFkvZ8TExORkpICBwcHlCpVCmFhYfSYUJTw8fHRKuzqEs71fVKp7/XLKtatW0efz5UrV+LixYt48eIF/Pz80KlTJ9qH2tjY4PDhw1AqlaL2qirsenl5ZWFtsgahPebNm4fChQuLRHFCCKysrNCmTRt8+vRJ7fxVq1bB0NCQirtGRkYwMjJCrly5ULt2bbi7u2v8Lqnx4MEDDBky5Jc8du3s7GBra4tu3bqBEIKxY8dm0t1mX1SF3aZNm8LAwAAGBgaYP38+PZZWn/v06VMq6EqhXQrt9ubNG5w/fx4nTpzIwjvSD96/f49atWqBEILRo0cDSN/ClbCMFBe6GAxGxsBEXQaDwcgG8BORL1++YPLkyShSpAgIIShUqBD+++8/AOkTdocPH44+ffpk9O1mW44cOQIzMzMQQujWauHE7fHjx/R4u3btdF7Lzc2Nihs+Pj4Zet/ZBdVJLv///v37w9HRUa28cAJ94MAB2NnZQSaTIX/+/KJt2VKYPKsirPOzZ89w8uRJrF69Gh4eHnj06JEoPIC2Z1tK3mS6ENoyJSUFjo6OkMvl8PX1VSv7/v17bN++HcWKFQMhBGXKlMHjx48BiMMI7Ny5kwq7QgFSCgif2/Hjx9NdDQ0aNECHDh3QsWNHmJqawsTEBIQQ2NnZ4erVq0hJSRGdu2LFChgZGYEQgmrVqmHZsmV49eoVvn37RstI6dkX1lX4e3qF3ZSUFISEhKBIkSIYMWIEbt26hU2bNtHjUhGBtAmzwgVC3mNXLpfD2toaCxcuTPN8IVJol0I7HDt2DPXq1YOpqSlsbW1x+vTpdF1DKm3ud1i0aBHdrXDz5s00y2tqc2zhl8Fg/AmYqMtgMBhZDD9o5gd8vLDLbydu2LAhHj58KCqrDeEAUQqTFlXmzJkDQghGjRqFlJQUKJVKapPLly9TQbdXr170HKHNhL9HR0dj4MCBIIRgxowZasf1DWF78fLywsyZM9G8eXO4u7ujRo0aqFSpEuLj49XO0yXsCj12pTQ5FNrSzc0NlStXph6NhBD8888/cHJyEnlMqbYt4f+PHDmi0VtSCghtGRgYiNDQUBQrVgxNmzZFQkICbVdCe8XFxcHHx4cujtWuXZu2XeH11q9fj3HjxmVSTbIfwoUrb29vREZG0mOXLl2Ci4sLcuXKBUIIqlevjgcPHgCAKKTFypUrabztdu3a4fz58/SYvi9KqD6zmvpHHl3CLvCzf9y+fTsIIVi8eLHouL6/z4Xvh+joaHz48AHXr1/HpUuXRDtlhOVOnTqFRo0aQS6Xw8rK6peFXX1GaKfdu3fTxZdGjRphyZIlamFpNCG0oa4dN1KDt0tkZCTs7e1BCMHw4cMRHx+vdZwj/Hzo0KGYO3duptwrg8GQBkzUZTAYjExCdZIRExOD5ORkjbHyeGE3b968dCCeXmE3vWX0jcjISJQvX56GXQB+2vzKlSsaBV1+YvPlyxf6mXDy7O3tDTMzM9jY2OD79++ZUY0sQdg2hbFKCSE0duE///wDX19fjW1Lk7BrYGCAfPnyYenSpZlSh+yCNi9IOzs7dO3aFfb29lQoMzY2xq5du3Rer2vXriCEYN68eRl969maoUOHIl++fJg5cyb++ecfjBo1Smf5r1+/YtGiRbCwsICRkRG2bdsGAKKFHiH6LpqpEhQUhKpVq0Imk1HbqNolNDQU69evR548eUAIgb29PX1fqcbY5fuLVq1aiRYr9PVdJGwvx44dw7x581CzZk20atUKzs7OOHnyJN68eSM6R1XYdXJyQkhICGJiYvD161fs378fhBAoFAqcOnUqs6uUZQjb3YkTJ9CpUyfkzp2btqkyZcqgbdu2ePz4MWJjY0XnCoXd3/HY1Xd8fHyoHadNm4awsDCNC2G6WLZsGdq1a4eoqKhfOk/f+fHjB8aMGUPDeUVERADQ3ef179+fhqvhx6kMBoPxv8JEXQaDwcgEhBPAQ4cOYfbs2ahduzYaNmyIzp07Y8+ePQgNDRWdExUV9T8Ju1IjNjYWFStWhKmpKS5fvkw/1yboCkWJQYMGYebMmRqv26xZM1SqVEkSE5kFCxZQEdLJyQlt27ZFtWrV6KSwa9eueP78ucZzhfbx9fWlMXZdXV0z6/azFfPmzaN227NnDw23EB8fj1OnTqFevXr0eEBAgMZrXLx4URTrVNiupcTdu3dhbm4OQghKly4NIyMj9OzZE4BuD7KHDx+iQIEC1Huf8RM+vnixYsXw/Plzre+UqKgoLF++HJaWliCEYNKkSfSY8JkXCrstW7bEyZMn6TF9e18J3+fTp0+HqampWjxiS0tLNG/eHJcuXRKd+/DhQ4waNYras2zZsqhVqxbq169Pz9X2LtJHVD1KFQoFtQM/9uEXFsuXLw8PDw+1XQuqwu6iRYvoMSm8t7Vx48YNFC9eHIQQzJ49W3Qsvc+kr68v/XsMHTo0A+7y7+b169e0nQr7Rm3069ePLujysbL1rX9kMBiZDxN1GQwGI4MRTgCnTZtGt8Gp/nTp0gUHDx4UncuE3fShVCoRHh6OMmXKgBCC9evXAwCuXr2qUdAVbgs+ceIEDAwMkDdvXo2JwGJjY+nv+jZBFLahoKAgFCpUCDKZDAcPHqQeeY8ePcLMmTNpOx0wYACCg4M1Xk9on127dsHNzS1jK5BNCQgIQL58+dTiMfPt6NKlS1QI6tChg9brxMXFYePGjbC1tQUhBB4eHqLrSAkfHx+UKVOGhrGoXr26zueS/4zPUF6vXr1Mvd/sCv/Mz549G4QQVK5cOc2t2E+fPkWDBg1ACEGLFi1Eu0t0Cbv66G0q7DMnTpxI6ztx4kRs3LgRJ0+eRI8ePVCiRAkqmqsmLn358iVWrVol8kaVyWQwMTERLYLp2/tGF0KP0tGjR+Pw4cN4/fo1/Pz8MHHiRNqfFitWDPPnzxfFJAd+CrsGBgbIkyePZBcTgZ9tdM2aNTAxMUHLli3pbqRfHTfu2bMHNWvWhJGREfLnz49nz5798fvNjqi+Y7W9Y5KTkzF69GjIZDI0bdpUq7eu8P+DBw8GIQQFChTAhw8fMuDuGQyG1GCiLoPBYGQgwoHcpEmT6KRlwoQJ2L59O3x8fDB58mTqiVKrVi2sWbMGwM9BpKqw26RJExrbUGqktfV/9OjRIITA0dERO3bsSFPQjYmJoecIM2hr+j59E9JU63P+/HkQQrBq1SoAP+2kVCqRnJyMZcuWiYTdV69eabwu29oOLF++HIQQ9OvXD3FxcdSGgDi2M+9tCmhPUhcTE4NBgwZRQU1qCNuTt7c3ypQpAwMDAxBCMHnyZI3lhAwYMACEEFSsWBGJiYmSXwzj6z9//nzq/RgTEyM6pglPT0/6/N+5c0d0TJOwK5PJYG9vj7Nnz2ZALbIeDw8Pao9Dhw6pHZ86dSptp4MHDwagbt+nT59i7ty5GDRoEJYtWya6jpT6zIcPH6J06dIghGDOnDlqx+Pi4nDt2jUaI7t48eLYunUrUlJSRO/zU6dOoUmTJiCEwMHBQe+fdV1tJD4+HtWrV6fjzV9F1YOa9ywXhlbRV4T92YYNG/DkyRPRcdV2deTIEdoXbN26Vet1hXkz7O3tYWJikq4EawwGg5EWTNRlMBiMTCCtCeCsWbPoceEWLn7wyAu7/FZiW1tbUfIQKSCcwLx//x43b96kYgQ/CN+5cycMDQ2RI0cOmtm+b9++9DzVrdo7d+4EIQRFixaV7Nb2cePGYerUqdi1axcsLCxw48YNrWXTK+xKleTkZCQlJdHQEytXrgSQ/tjO4eHhoueaPy8sLAw2NjYwMjLS6iWtzwgn0fv376ceu0WKFMG6devoMWEfkZKSgtjYWHTo0AFyuRxTp07N1HvO7pw5c4YmOBPGvVYVLHibXr16FVZWVjA3N1cTOQCxELJmzRoQQmBubo63b99mUA2yBqVSiQ8fPqBBgwaQyWTYsGEDgNT68za4desWfc67d++u8Tq6vHCl4qHLtzUfHx+YmJigWrVq1ANXU+zrp0+f0nA0tra2dGeNUNg9fPgwRo4cSd/1+ijsenh40IV9bcJuZGQk3bkkjCeuDU3HhOMlfvF7yJAhemlTTQwZMoSGUnFxcVHzuBe2O977tkGDBml63yYlJWH16tUghIhiQDMYDMbvwkRdBoPByGAiIyPRuHFjyGQyGhZAOGEJDAyk8SKdnZ3VzlcVdgkhGDlyZOZVIBsgnLhs2LABjRo1Qt68edG3b1+1RHNOTk7UU6xy5cp4//49AHVB18/PjwqUy5Yty/hKZENWrlwJQlKToFWvXh05cuRIc7GACbtpY2dnB0KIKJxKemI7T5w4ESNHjkRISAj9jG/7ixcvRv369SUj+KgiFBK8vb1RqlQpmkRJ2/Mr3NLt5eWVWbf6V/D69WvUrVsXMpkMjRs3xsWLF+kxTaLNoUOHQAiBiYlJuuJqr1+/Ho8fP/7zN54NuHDhAvUY5W2R1sIN/55KK9SFlODbWZ8+fUAIQbt27bSW5e178uRJmrhvxIgRatcSIhTd9AV+ITpnzpy4f/++1nKfP39G+fLlIZfL6aJNery/z58/j+3bt9P/8+d8/PgRBQoUgJ2dnV7aFRDbJyoqCq1bt0alSpVACKFe9/3798f27dtFCfuUSiU2btwIQghy5cqFq1evAtC9OPPq1SsMHjxYZ0x4BoPBSC9M1GUwGIwMJjAwEIQQFCxYEEFBQSKPHuEEsHfv3vQcVS8TfrAZGRkpEoqkIPCoxiTmRZrGjRtTkVxYLjo6GrVr1wYhBFZWVujTpw8OHDiAuLg4AKkT8oULF2r0jJaCPYUcO3YMjRs3hqGhIYyNjWFlZYXbt28D0D0BFAq7gwYNYsKuCh06dBBtexWGXNAWCuTy5ctQKBTIkyePRu/GT58+0fYptXbKIxRufHx8YGNjQ4XGbt264cqVKwgJCcGNGzdE8V2nTJmShXedfRE+x/369RNtBeZFSN7mc+fOBSEEnTp1Qnx8vFZvvb89bMD58+cRGRmps8y2bdtACEHHjh0B/LRRWoJuYmIiTp8+jW/fvmXQ3f+d8MmjGjduDKVSqVM0DA8Pp/1ry5YtRcf03YM0KSkJ27dvp0JjmzZtAGh+5lJSUtCwYUMQQlCpUiXapnXZ6OPHj3BwcECVKlUQFBQkOhYfH4+VK1fqxUINb4OvX7/Sz4Ti6tq1a3Hr1i1aZvLkyWjWrBntKw0NDVGtWjXs2bOH5rhISUmhcccdHBzoeFMTqu9vfRXJGQxG5sFEXQaDwchg9u3bR+O8CklrK/bXr19F8ctUB4J/++Q5PQgnIFOmTKGD6o0bN+Ldu3dq5XgbffjwgU5o+C3G5cqVQ+XKlaFQKGiypWnTptFrSMGemjh79iyaNGlC4zr36NGDHtMlHgoFoU6dOuHz58+ZcbvZGt5efFu1s7PD/v370xR0k5KSMHnyZCgUCkycOFHnd+i7cJEWwjbp4+OD0qVLQ6FQgBACCwsLGBsb09ArFhYWmDt3Li0v1WdcFWEb4rdV8ztFDhw4oFbe19eXltm8eXNm3mqm0rhxY1haWmLjxo06hd1Vq1aBEIIaNWpQYSg9nvh8mKX9+/dnXCX+IlJSUqBUKjFq1CgQQlCtWjXqAanr3cPvMLGyspLceycmJgbbtm3DoEGD6Gd8EjS+f+Of782bN8Pa2hrGxsaYNm0aoqOjRcd5eFsfPXoUpqamqF+/vigRHV9en949R44cQZs2bah4yzNixAg6Xhe2rc+fP8PLywsNGzakYdBy5syJAgUKwM3NDQ8fPsSOHTuQL18+FC1alF5XqguwDAYjc2GiLoPBYGQwe/fuBSEE9vb2dNCdngngokWL0ky8IBU2bNigNSaxtizDycnJGDp0KGrUqEHP5X+cnJxE4oQUxR6h3c6cOYPmzZtTYXf27Nn0WHqE3T59+mTkrWZ7VCe9r1+/pokNjYyM6LZNHtWQIXwfkSdPHpw+fTrzbvwvRTUUQ9myZSGXy2FmZgY7OzvMnDkTXl5euHLlCi0nxWdcF7w9EhMTMXToUNo35sqVCz179oS7uztWrFhB40oSQkRxifVJ4AFSF1H5ZFDW1tYIDAzUWvbs2bMwNTVFuXLlEBcXh7t376a5cPPy5UuaxOvUqVMZWpfshqa2olQq6efnzp1L184ZoVjJ95dpeVXrI/Hx8fT3JUuWQKFQUI9RYT/35MkT6tVbvnx5LF++nAq7qtv+g4KCaCI6fY/z+uDBA7qw36lTJzx69AiAeIHr5MmTANTb4MePH3H37l20a9cOZcuWpeXLlSuHmjVr0tAgY8aMyfR6MRgM6cJEXQaDwchgjh8/TrdsvXnzBg8fPkxzAhgcHAwHBwcQQtSSM0gJpVKJ6OhotG7dGjKZDIsXL07XecKJzYcPH+Dv748NGzZg+/btuHnzpigempTFHlVht2nTplAoFLCyssK8efPoMV3C7rlz5zReTx9RtUN0dDSSkpJEcTJ5G3h4eMDCwgKEEBQoUEDrdswDBw7QiWF62zdDPXla6dKlqXf0pk2bRGWZt1TauLq6IkeOHFTs4L2f+XiS06dPp2X1rc/k28enT59gbW2Nnj170mPCdwXPu3fvkC9fPhBCUL9+ffo+F+5yUN1SvWLFCrplXkrepcLn9O3btzh+/DgN8cMLu58+fUK7du0gl8uRP39+mnwOUE9+CABTp05VGz9JkRcvXtAQNHnz5qWhEZKSkqjdAwICaDzYUqVKYcSIEQgNDaXX+PjxI86cOYPixYuDEIKuXbuqefzqGwkJCRg0aBDd2dGlSxd069aN9nfHjh0DIK6/qi1+/PiB+/fvY/bs2ShatCjdHcLbumjRorh+/Xqm1ovBYEgXJuoyGAxGBqNUKmkoAD4ZFSFENHFUnQDy2wtbtmxJMzxLlZs3b9LBdkBAQLrP0yXk6ON2wt9FaAM+FINCoYClpWW6hV1A/4QeVYT1O3ToEGbNmoVatWqhfv366NSpE3bt2iWaLL98+RJjxoyhSRBr166N5cuX4/bt2wgLC8OhQ4dEIUVcXFzouUyETB+qHrslS5akydOEwhCzp3aEtjl48CCmT5+OkiVLonTp0ihUqBDGjh0LHx8fWkbfnnO+/vw7+Pv37/SYq6srVq1aRbe3Az/r7+npScVcQgj69u1Lywg9KQFxUs4dO3ZkVFWyHcK2dezYMTRs2JCGQ+I9S3n27t1LdzeUL18eHh4eGq/56NEjFCpUCIQQuLu7A5Duezw6Ohq7du1CzZo1qYc5L+wmJiaKkssJ22qhQoXQrl07DBo0CJUrV4a1tTUIIWjRogV9DvTtOecR5l4YN24cTExMRAtYFy5cAKD7naF67N69e9i3bx/Kli1LPXUVCoUoMTKDwWBkJEzUZTAYjP+BtMTB5ORkJCUlYdGiRdRrjxCC9u3b0zKq2bCF8Qu3bduWYfeeHUjPNlTeHhUrVkzXNXUloWCDa838KWFXX1FN1seHqVD96dy5M3x9fWnZx48fY9q0acidOzcIIciRIweMjIyo+Mh7Rc6YMUPjdzHSRlvytPLly2Pjxo30mFTbbnpQtU1UVBTi4+PVPEr1zYb8VnT+HSEMCeDq6gpCCGxsbLB582aRsAukbm3v2rUr9czr06cPUlJSRIJuREQEduzYQfuHmTNn0mP6/i4S1m/Pnj20z2zVqhXmzJlDPaCF5VauXEnLmZqaYujQoXj06BGio6MRHByMY8eOUY/Sjh07sr4SqTF29+7di6pVq+oUdi9fvoymTZuiYMGCau+tYsWKYdCgQfQ50PfEXcL6VaxYkS401K1bFy9fvqTH0npGVfvD0NBQHD16FK1btwYhBIULFxblfmAwGIyMgom6DAaD8ZsIJxSxsbF4+fIlPnz4gDdv3qiV/fTpE1q0aEFjbDo7O6uVCwsLw/bt2yUzAXR0dAQhBGvWrNFZbv/+/TTWY1BQULqFBR8fH5HXFUM36RV2pTaRFtpl0qRJ9PmcOHEiduzYAV9fX0ydOpXGzrWzs8OqVavoOWFhYTh+/DhsbW2ph5mJiQlMTU3Rv39/7Nmzh5aVmm3/FEzY/XMIhU3h7/pGo0aNkDt3bipcqwpZHz58oO3IxsYGGzduVBN2AwIC0LJlS7r1ukaNGhg+fDi2b9+OGTNmoE2bNpL3xPfx8aE2mDZtGj5+/EiP8XYQ2mPNmjUoUaIEFcsLFiyIEiVKIHfu3HTXgxQ8Sn+FtIRd/hkOCQlBYGAgRo0ahT59+qB3795wc3PD9evX6d9ASvbkYzPz43ITExO0b9+ehgf5FYT95O3bt2FjYwMLCwuaeFJKzzyDwch8mKjLYDAYv4Fw4Lty5Uo4OjrCyMgIuXPnhoWFBQYNGqQW1/HVq1eoXbs2HUTmzJkTLi4uWLx4MVxdXWkMXSlMAD9//oxWrVrR+l6+fFlr2ZMnT9JyfHzhtISGs2fPolixYpg4caJe2i+j0Cbs5sqVSyTsShEPDw/aDlWT9QHA7NmzNT6/PFFRUXj27Bl8fX1x+fJlPHnyRJSshrXT/w1twm7lypXpNm0GA0iNH25iYkJ3gKgKu/y/oaGhaQq7165dw4gRI+j1VH+KFi0qipUtJdHs9u3bdFfCnDlzRMdU3+HC/u/IkSMYPnw49aDkf6pUqYJRo0ZJxqMU0D7WUd0lpkvYFcbYFaL6zpHaO8jHxwcODg7w9/eHi4sLTExMYGxsjPbt2+POnTu/fd3IyEjY29uDEIIOHTr8wTtmMBgMzTBRl8FgMH4R4eB44sSJokmHqamp6P99+/YVJUh6+/YtevToQSc6wkmLQqFAiRIl8O+//9Ly+jgBvHjxIoBUW7Rr1w4DBgxI85zGjRuDEIKSJUvSTMW6mDx5MgghWLJkyf98v1JDVdht1qwZbacnTpzIwjvLOr58+YImTZpAJpOJ4uTxk+DAwEDqRebs7EzPSys8i1RiO2dWPya044EDB1CuXDkQQlCrVi1ERUVlyj0wsj8RERHw9PSk7+Hy5ctrFXY/ffqUprD75csXBAQEwMnJCbVr10a5cuVga2uLFStW4NKlS7ScPr7PNcH3iytWrICRkREcHR0RGRkJQHdfpyoqPn78GHv27IGnpyd8fHzw7t07er4UbCm0VUREBIKDg3H79m3ExsZq9KbXJexqspe+v3e0Iaw3Hwc/Li4OI0eO/C1hV1NCtV27dsHQ0BAVKlRAeHj4H7x7BoPBUIeJugwGg/GbLF26lAqyU6dOxY4dO+Dt7Y1JkyahePHidPtg+/btRYO6yMhInD17FgMGDEDjxo1RqVIl1KlTB2vWrNH7CWCfPn1ACMH27dsBpE5UeHr37q0mwqakpCApKQkLFy6ElZUVDA0N0alTJwQFBdHjqhNBb29vEELwzz//4Pz58xlcI/1EVditXLkyRo8enYV3lLUEBgaCEIICBQrgyZMnonZ35coVmoSmd+/e9BzeC1dKE2e+rkIPOuHvp06dyvAJrmosz2rVqqVrIehvQfW9IDXvuj9FZGQkPD09aYzW/0XYVRUak5OT1WLlS+3vlJycjMqVK4MQgkmTJqX7PN6Wv5KoSh8R9mO+vr5o2rQpLC0tYWJigkqVKmHOnDl4/vw5gFR7/K6wKwXSegf/+PEDQGp+i1GjRmkVdoV2vnv3rsYdZnyfsWnTJhBCUKFCBbagyGAwMhwm6jIYDEY64ScSSqUSHz9+RKVKlSCXy2lIACEBAQEYNmwYTfrRpUsXjddMTExEXFycJCaAAwcOpN7MN2/eFB0TxjZbu3Yt/ZwfQEdERND4hObm5mjWrBlu3bolusaXL1+we/duep2lS5dmfKX0GOFE6OnTp/R3KU4M+bjODg4Oos+Fgm6vXr3o5/zz/PXrVxw/fjxT7zWrOXz4MFasWIGoqChRPzZs2DAQQjB//vwM3zYtbLv6Elc7JSVF9OwFBgZm4d3oB6rCbrly5XSGYihVqpROYVfY3vXxHf4rJCYmoly5cjAyMoKfnx8A3eEStIVjkNKimCaEYxrhbjAzMzPY29vjv//+A8CEXW0I6xsTE4OHDx/ixo0bePz4sSi+M19Ok7DLx9jl7Xvy5EkoFArY2tri1atXGr+XDy/WqVMnmhSQwWAwMgom6jIYDEY6EA4Mw8LC8OTJExgbG2PIkCGicsIYmU+fPsWECROosCv0VpHahG/mzJl0IsKHXwB+bh18/PgxevXqRScuwuRpvO0/fPiARo0aQSaTgRACY2NjjBo1CnPnzoWrq6soKY2Ubf0n0RX3UB/RVr99+/bR7Nh8e9Qm6Ar7gMWLF4MQgs2bN2fsjWcTbt68SZ9Bd3d3Km6PGTOGfn7s2LFMuRd9EIPOnDmDffv2ARDXh7fnli1bsurW9IY/KewyfhITE0MTQ06YMCHd5/n4+ODChQsZeGd/D2fPnqWhj8aOHYstW7bgzJkzaNmyJfLlywdCCEqVKkVFR13Cbp48eXD//v2srE6mIxy3r1mzBs2bN6fvIblcjjJlymD58uWIjo4Wnacq7LZu3RpXr14FABw6dEjjOFPIuHHj6G4x3puawWAwMhIm6jIYDMYvMHLkSHTo0AGLFy+GQqHAunXrdJa/d+8eOnToALlcjooVK0puUA0AL1++RKVKlWBoaIhdu3aJjvHeIykpKXjx4gV69+6tU9j99OkTBg4ciLJly2qMSZwnTx7Mnz9f7Tx9RbV++l7fjERoOz7+Iw+frE+hUODVq1d4+PChRkFX6In26tUrmvxQkze/PhIZGYnWrVuDEAJDQ0Ns3LgRQ4cOpc8o77WcHsFV6mEGzp07B0II8uXLh/3799PPR48eTe0ZEBCQdTeoRzBh98+SkpKCxMRENG3aFIQQODk5IT4+nh7TRlhYGE0w9fbt28y63WyDavia4cOHa0wy9/nzZ7i5udGY4SVLltQp7NaoUUPjThN9RtjO+NwXcrkcuXLlQo0aNVCgQAHaj/bv319t51dCQgJGjx4NCwsLEEJgZWUlSmY8ceJEjd8FpC7m1qtXD0+ePMnYSjIYDMb/w0RdBoPBSCc+Pj4ghMDIyAj29vYwNDSEh4cHALF3nio7d+6kA8Hdu3dn1u1mG27dugUjIyPkyZNH5KU7ePBgkdADIF3C7rdv33Dp0iUMHz4cTZo0QcWKFVGjRg24ubnh1KlTauX1FWH9jhw5Qn/XBw/FrGT06NEYOHAgkpKSRJO1Ro0agRCCatWqIUeOHDoFXQBYuXIlCCFwdHSkyVikQFhYGLp27aq26MIn2UuPOCts26tWraIxtKXUttevX49ixYrBwMAANjY2OHbsGFxcXEAIgUwm+yWPZ33vC/8EvyvslilTBhs3bqRlGT9Zv349ff6F8fJV+wD+/4cPH4a1tTXq1q0rueRSwr7t27dvAIDChQujfv36NISMUqmkz/L379+xZs2adAm7W7ZsQd++fXWOU/9mdL0XZsyYQdvg1q1bqdD66NEjbNy4kR6rV68eDTMlDMUwe/ZsVKlShZazsLDA7Nmz6fWFfavwPr5+/fonq8hgMBg6YaIug8Fg/AITJkwQiRWDBw+mx1QHlsL/161bF4QQjBw5UmNZfeb+/fswNjYGIQQuLi4Afm5P07QdW5ewqzoZ/PHjB2JjY9Vilum7V5+w/YwfPx6EEEyfPj0L70g/+Pfff0EIQf369elkLSkpCUlJSViyZAly5sxJ26WTkxM9TzUmtp+fHy23bdu2TKxB1sI/d8nJyShVqhR97ocOHfpb1+vSpQsIIWjVqhU+fPjwJ2/1r2DDhg2oWLEiCCGwtLSkberkyZMAft3j+dq1a3oTYzgj+FVhl98xYmFhQbdnM362y9DQUHTu3Fnju1xYDgCCgoJQpEgREEKwcOHCTL3f7MSKFStgZmaGJ0+ewM7OTjTG5OHt9v37d6xevTpNYTc+Pp7+rq/CrqYxn5+fH4yMjES7ZYT94aNHj+gCbfv27TVeLykpCbdu3cLixYvh4eFBFydVr6XrPhgMBiOjYaIug8FgpAPh4G3s2LF0kmJmZkaTgADaJ9n169cHIQQ9evTQWU5f2Lx5s0iEmT9/PrUZH+ONEIKjR48CULeHqrC7evVq0XE2cE6F9wblJ8IRERFZfUt/NYGBgTAxMVHzLANSBQpHR0fqrd+lSxe1JCmhoaHYtm0b/ZvMnDmTHtP3Z14Iv92Vj39taGiIVatW/VIW8JCQEGrHQoUKUS98KdhR2L/t3r0befLkobZ0dXWlx37FA7dTp04ghGDHjh0ApGHH3+FXhd2cOXPC2dk5y+43u+Pj44OaNWvSZ3n27Nl49eoVteGnT59w6tQpam9nZ2farqXWRl+8eIGiRYvSGLgmJiZqoRd4flXY1UeGDBmCMWPGaD0+ZcoUyGQyGipBmMzw0qVLGkMoCe2lK7EfG4MyGIzsBBN1GQwGI51oEnblcjnatm2La9eu0WPCQWFKSgo+fPiAatWqQSaTpRmDVx/gxdihQ4ciMTERKSkpePv2Ld06zHtOXLp0CYB2z5G0hF0pIswIHh4ejurVq0OhUODgwYPpvoa27YJSJyUlBbGxsejduzfkcjk6deqEuLg4AD9t9ubNG+p1z3voTZw4EQsXLsTUqVPRokULeoz3SuevLSUWLFgAIyMj7Nu3Dz169KDCrru7e7q2pfLt8v79+7CysgIhBKNHj87o285W8DbgdzUYGBiAEILSpUuLYuymp20dOnSILlbkz58fr1+/zqjb1gt+RdgVej6zMBc/Eb5bNm/eTGPlEkJQs2ZNODg4YOTIkbCzs4O1tTUIIWjWrBm1qxRt+e3bN2zduhW2trbUVh06dNDqXa9N2C1dujQCAwMz89Yznb59+4KQ1GRkISEhasdDQ0Pp8+vt7Q3gZ1+pLckpv+OGD38hPIfBYDCyM0zUZTAYjF9AONHgt70bGBiga9euaklr+MHgnj176PZZYcxXfWTIkCEghMDY2Bjnz58XHePjbPIeZ9OmTaPHtE3gmLD7E6GNvn37htevX4MQotNTRRWh58mnT58AsEmLKps3b6btTRirmLd/SEgIevXqBRsbG7W4sQqFAiVKlMC///6rdp7UePPmDQAgIiKCeon+irDLt8sdO3bA2NgYDRs2lJwtw8LC0KNHD8jlcowcORKVKlWi3ni8UAGk/Qx//PgR8+bNQ5EiRSCXy3HgwIF0nSdl0iPsCoVLqbXN9CBsX8eOHcOgQYPU+kxCCIoVK4YhQ4aoCeZS5Pv379i5cyfKlCkDQgisra1x+fJlAJrbmFDYXbNmDQ3X0rlz50y978yETxZpampKnQNU+fz5M4oXLw5LS0v8999/9HNtgq7QuWDIkCFYu3Ztht0/g8Fg/GmYqMtgMBi/iHBgzcfYNTAwQM2aNbFmzRpER0cDSBU1tm/fTicu+h7zdPny5XSgfeHCBdExYUKKdu3a0d/Hjx9PyzBhN30MHToUtWrVgqenJywsLH4r+V6/fv2QK1culp1ZgFCgad++PQghaNu2rSgBEi9SfPnyBefOncOgQYPQpEkTVK5cGfb29vDw8KATcED/hR7eZkLb/fjxA4B4629kZCSNralJ2BWWffXqFSIjI+mxZ8+eoUmTJiCEiCbnUuH58+cIDg4GkBpjt3z58r8l7L57946GD+FjuzN0oyrsVqxYkYa4YYJ4+hDaKSUlBf7+/pg1axYcHR3Rq1cvLFq0CBcvXhTFMJU6vLDLP+v58uXDy5cvAegWdqOjo7F48WJ0795db2Pn+vn5wdTUFCYmJmrjTB6lUol3796hUKFCIITQRSxtgq6wzR0+fBiEEBQtWhSRkZFsNxODwfgrYKIug8Fg/AaaPHb5n7Jly6JMmTJ0QEkIwYwZM2h5fZ0Mdu7cGQYGBnBzcxN97u3tDRcXF7Rp0wanT5/Ghw8fMHLkSGqbCRMm0LK6hN1+/frRc7QN5vUdb29vKozxWy337dsHIP2hFITZoNu0aYPo6GjJTFx0JTPk/5+SkoIlS5aAEILixYvTjNjC0BdCkpKSEB8fr5YsTV+fcx7hs5qQkIBPnz4hMTGRirqA2FaahF3VGLvHjx8HIQTjxo1DTEwM/Xz58uWoUqWKpAQfbe1n48aNqFChgkZhV1VkV00ud/36dRgbG6N48eIICwvLoDvXL3hhl/fMz507t6htMv4c+t5nClF9j6jWnRd2ec/b9Aq7cXFx9Hd97C8XLFgAQgiaN28uCksxatQorFixQlS2e/fuIISgS5cu2L9/f5qC7vfv3zFs2DAQQtTGsQwGg5GdYaIug8Fg/CbCgfW4ceNoWAEzMzPY2tqiXbt2mDlzJs26q3qOPvHt2zeauXr48OH0cz4cw4gRI+iEBEjNOjxq1KhfFnbbtm2L3r17Z1xFsjmfPn3C2LFj8c8//9BQFosWLQKQ/gnxgwcP6ESxfPny1LNc3xFO3oSeoJqIiIhAyZIlaXJDXZNoKSK0x+rVq+Hk5IR8+fKhatWqGD58OK5evarxPFVhd8WKFXj37h2AVEGX70PHjRundi7fvvWxD1WtU2JiotpnwvarS9jlPfROnTqFIkWKUKGDt9+gQYNgb28vKQHtf4UXdnPkyIEuXbpk9e3oHVLpS1XrmZiYqHFhURhS4VeEXV3f9bfD24UPvVCvXj3Ex8cDECcvfv/+Pa27h4cHZDIZrK2taS6Hvn370muqejPzO+tsbGz0PiYxg8HQL5ioy2AwGP8DmpKnGRgYYPjw4aLkaYB+e6GkpKRgwIABUCgUqFWrFo4cOSLyxj158iQA8UTj8ePHvyzs8ltfdZXRV3jbhYWFYcyYMciXLx+N1fzw4UNRGW3wbfDhw4ewtLQEIQRbt27N2BvPZowaNQpOTk7YuHEjUlJS1MRCXjxbsWIFTExMUKVKFQQFBQHQ72c4vQhtMHHiRNEuBf7H0NAQPj4+Gs+PjIxEly5daF/ZrFkzODs7a0wwJ8xWzv9f3xD2Y1u3bsWYMWNgb2+Pdu3awd/fX+RtKxQhhMKujY2NKHna6dOnqT3nz58v+r5nz57R72TtOf1ERESIQqsw2zF+BWF7uXr1KhYsWIAqVaqgdu3aaN++PXx8fERx7v+EsKuPnDlzhvZtw4cPx9ChQ+m75PDhwwB+vidiYmJogj6ZTIbq1avTBV1eEObx9/en11X1+GUwGIzsDhN1GQwG439E1WOXFzW6du2K69ev02P6KEgIOXr0KPLkyQNCCAoUKEAHyGfPngWguf6qwm56Yuxqu5YU4CeGoaGhGDNmDAoWLEi9Vp4/fw4g/cLuihUrYGhoKBLT9R13d3eR+NimTRssWLAAX758USt79epVGBsbgxAiSnzGSGXRokXUjiNGjICbmxu6d++OqlWr0s+3bNmi8dzY2FhRnGw+yZww7rgUBAtNArlq4r3+/fvTPhRQF3Z5sSdHjhwYP368KLyK0ONZVYRkouTvI4W2yfhzCN/J+/btQ758+ehzbmpqCkIIrKys0L59exrnPr3Crj6GWEiLlStXqi0kqjoOCBOblipVCoQQFCxYECNGjEBAQAA9fu3aNbi5udHrTJ48mX4P6yMZDMbfAhN1GQwG4w+gKXmaoaEhevXqhRs3btBj+ipG8vU/fvw4jIyM6IRlypQpamVU+R2PXX1GVxtRKpXUJrzHLi+kOzo64sWLF2leg+fevXuwsLBA48aN033O387Xr1+xYsUK9OjRQzQhtLGxwcKFC0WeeAAwefJkevzRo0dZdNfZjxcvXqBEiRKQyWQ4dOgQ/Tw5ORmXLl1Cx44dqW03b94sOlfYzjw9PTFixAhMmTKFJrPhryMlZs+eTe3VpUsXODs7o3nz5lTkbdSokcjOQmF3+/btqF+/vprIkZ6+l8FgZCzC/m7Xrl30+XR2dsayZctw48YNzJgxA3nz5oVMJoOtrS0ePHgAQLewW7BgQRrvXSoId9XY29tDJpNBJpOhRYsWtIzQ3nz5x48f06Rz/Ni0atWqqFWrFkxNTWnYH1dXV3ou6zMZDMbfBBN1GQwG4w+hSdg1MDBAz549JSHsAuLYZoQQNGzYEHv37qW20VZ3VWF34sSJ9Jg+20sVYRv6/Pkzrl+/Dl9fX1y+fJkKtkLCwsIwduxY5M6dG4QQODg4/JKw6+/vr7dZslUR2iMhIQGnT59Gt27daGZ7Q0NDGBgYwNXVlcbBvnDhAvLnz48cOXLAz88PgDS9d1S9wS5cuAC5XI558+bRz4SJ5IKCgmiIBU3Cri7vMqnZ9/r16zQUir+/v6gPmD17NqytrSGTyVCnTh0cPHiQHhM+t5cvX8a0adNQpEgR9OzZExs3bqTHmDjBYGQ9x44do/3hnDlz8OXLF9oP7tixQzRuKlu2rFZhd9euXahcuTLdaSJF+PG1QqGgNhswYIDG/AC87fh47ry4K/xxdHTEhg0b6Dmsz2QwGH8bTNRlMBiMP4g2Ybdv375akwfpCzdu3KCD5OnTp8PCwgKEENjb22Pfvn1qmdlV4YVd3mti4MCBmXn7WY6w7axYsULkfSeXy2FiYoL58+fj5s2bovN+R9hVFc70eQunsK58PYWT5NevX2PYsGGoU6cOtXeOHDnQqVMnHD16FLa2tiCEoFKlSvj8+XOW1CG7MHr0aHh4eGDdunUghOD06dNay6Yl7EppsUaIqmDACzqenp4AxCIOAKxatYp68akKu6rP7bdv33R+F4PByHxev36NRo0aqXnQA4CPjw/tI5s1a4bSpUtTYff+/fsA1IXdDRs2oFevXpJZkBUSEhICBwcHGBkZYc+ePVixYgW138CBAxETE6N2Dt8PJiQkIDg4GFu3bsXy5cvh4eGBq1ev4uvXr2plGQwG42+CiboMBoPxh9Ek7BJCMGTIELXkDPrGzp07cfz4cQCAt7c3zM3NRcKu0JtPE0+ePKEeu927d8+0+85qhMIj32bkcjlKlSqF+vXro1atWrQdtWjRQrRVHdAt7ErN81G1vrGxsWril6q4CwDv37/HmjVrULt2bdpuixYtinz58sHAwAB58uShgpoUJ35r164FIQRmZmZo27YtChQogNDQUADa21hawq7UELa3WbNmwcfHB6tXr4a5uTkePXoksqPw91WrVuGff/7RKOwK26Lw+lISzdN6rzB0k1bIH8b/hre3N+RyObp3747w8HD6+cGDB2nfOGvWLCQkJGDevHn0PV6mTBmNwm5sbCz9XYrC7t27d6knc3h4OBYuXJimsJuedszaOoPB+Fthoi6DwWBkAMKJ9pAhQ2BsbIzHjx9n4R1lHJoGwvxnPj4+vyzs3r9/H97e3jqvr68IY2vu3LkTr1+/BpA6cVu/fj1y5coFmUyGYsWK0fivvD2Fwq5CoYCDgwOCgoKyqipZgvC58/X1haurK4oWLYpy5crBwcEBkyZNojbVdA4AvHv3DufPn0eTJk1QuHBhmjmbEIKePXtmRjWyJZ8+fUKbNm1EcQl3796d5nlM2FWHf84rVKgAOzs7FClSRGM5obDr7u6uVdiV+sJNQkICAGkutvyvCG354sULXL16FQcPHsT58+dF5XS9h6XW/n4VPgmij48P/ezUqVO0HxUm53r//j3q1atH+8syZcpQAVPK7VupVGptZ58/f06XsKvpmgwGg6EPMFGXwWAwMgjhAJz3aNMH0hoIC5N5Ab8n7PJIaRJz+PBhGrLC19cXgHiyfOfOHeTIkYMmWRHC2zEsLAzjx49Hrly5QAjB2rVrM68CWYywrUyfPl2UAEX4kzt3buzZsweRkZGi81XbYnR0NG7evIlhw4ahVKlSkMlkkMvlOHLkSKbUJzsSFhYGR0dHGs9w4MCB+PDhQ5rnBQUFoWvXrvRvcO3atUy42+yLm5sbSpcuDYVCAXNzcxQrVozaUVW40Cbs1qtXTyTsSgXhc37q1CksWbIEjRs3RqdOndCnTx9cuXIFHz9+pGU0vWM0hZuRosAjrPP+/ftRtmxZGBsb0+e0W7du8Pf3p6K5JlFNeA1/f38EBgZm/I3/Zdy+fRuenp7UqzYoKAjVq1cHIQTDhg2jNuTb5cmTJ0EIgYmJCV38uXv3bpbdf1aQnoUCYdv7XWGXwWAw9AEm6jIYDL0mrYlaRnuY6JsoKazPp0+fEBAQgG3btsHX1xcXLlwQlRVOnDUJu2nF2JUac+bMgVwux6hRo5CcnCzyTLl06RLMzMzUvEU1bdcOCwtDv3791GL36TPCNsR7RRFC0K9fP8yYMQNLly5F3bp1UbRoURBCkDNnTixevFirIKnaL5w4cQK1atWCTCbDggULMrQu2Z2wsDC0atUKhBCYmppizZo1+P79e5rnBQUFoVmzZpL2dha207Vr16Js2bK0rXp4eGgsB6gLu/nz5wchBKVKlaJefFJA+P6ZMWMG7ROFPzlz5kS3bt3U3kc8Qtv27t0bW7ZsyfD7zu54eXlR+1lZWSFPnjz0/5UrV8bSpUsRFxcHQPuYaenSpSCEoHr16nj06FFm3v5fx969e2FmZoYaNWqIdnDxbfPu3bswNDRE7dq1UaVKFSqwSwXhc/7o0SP4+flhxowZ2L59O27duiUqK2yPTNhlMBhShYm6DAZDbxEODD9//oybN2/i9OnTuHTpEl6+fPnL1wCkvc1QaItly5aJEkvxP126dIGXlxdiY2MBiOO9MWFXO9+/f6cCz/bt2wH8bGtXrlyh4kWvXr3oObz3FG9roYe0MAu0vi0s6MLDw4O2RX9/f9HCQkREBPz9/VG3bl0QQmBhYYE1a9bgx48f6UooN3PmTCp6PHv2LMPrkp0JCwujoRhy5MgBT0/PdAm7wh0LUmqXQoRtas2aNTQRX65cueDn50eP6RJ2V61aBUIIRo0alfE3nE0Q2sPFxYU+56NGjYKHhwf27duHzp07w8LCAoaGhqhZs6Zou7sqo0ePptc4duxYZlQhWxIYGAhLS0sQQjB16lRcv34d9+/fx44dO2hs1yJFimDevHkahV2lUonY2Fi6OyRPnjx0h4iUx0ua4O3Rtm1bEELQo0cPjeVu3rwJhUKBcePGYcmSJejcubNkYucK3wtLlixBhQoV1MaZCxYsEC0cMGGXwWBIHSbqMhgMvUQ4MFy5ciXs7e1Fg8KCBQti3LhxCA0N1RoKQCgIHTt2jCY5k6IAKRw0856QMpkMpqamqFChgshjqkyZMpg4cSIVebQJuw0aNBCFYpAyX79+RfHixSGTyXD69Gn6uTZBV2jT7t27Y926dRqvK6W2+uXLF7Rq1QpyuRzLly8H8LPd8v2BUqnEkydP0KBBAyrQXrlyhR7TBH+N169fo0yZMsiZM6davEl9QPU5VBVdlUqlyEa/K+xq+i6pIXx+PTw8UL58edp3Hjp0iB7TJewGBARo/FzfcXd3p+8aTeEnxowZQ49PmDBB4zV+/PiBbt26USFy2LBhAKRhR9U2xXvYTp8+Xa3s5cuXUbNmTRBCULhwYY3CLn+9jx8/olSpUiCEwNHRMYNrkX1QtadSqVQL76FapmfPnqL2qRoTmk9KuWvXLtH5msKG6BPC52/8+PF0nFmrVi306tULffr0oc92165dRe9hXcLugAEDRAvdDAaDoW8wUZfBYOgd2gTIIkWKoEmTJrCxsaGDvTZt2uD8+fP48eOH1ut1794dFhYWWLhwod4PqtNCmMhr06ZNNM7blStX4OHhQRN/WFpaYtiwYXQgrRqKgfcMKlOmDO7cuZMldclOxMfHw87ODoaGhvDy8gIgDrkgFHSFtjx79ixNXBUREZHp953Z6Hr+bt++DQMDAxgaGooEL03cvHkTVatWBSEEVatWVYuvq4mIiAiULl0ahBAsWbLkV289WyMUcAMCArB69Wr07NkT/fv3x549e/D06VMA6uLE/yLs6jOqgnhERAS+fPmi1TYeHh4oU6ZMuoRd1WtLyeM5JCSEetpv2rQJQOr7nn/n37p1i/aZqnHHefiysbGx6NatGwghsLW1lYToI2xLt2/fRkpKCnr06IE8efLg3bt3AMT2BIBr167Bzs5Op7DL98vnzp1D7ty5UaxYMVFcY31A064ioZ3Onz+PRYsWoX379ujRowcOHTqE4OBg0fn8ucOGDaPOBcIyQGq4gaJFiyJnzpy4evWq2vfrK8L6TZ8+XZRY89WrV/RYixYt6LG2bdvizJkz9JiqsLt48WJads+ePZlTEQaDwcgCmKjLYDD0llmzZtEB3c6dO+ng+fXr1zhx4gRNolSmTBmtSShOnz5Nr2Fvb4/3799nZhWyFadOnaLbMfltraoTnfPnz9Ptcvny5cPixYupYC4ccPv4+IAQgsGDB2dyLbKOtMQXXmCoXr26yKNZm6AbGxuL0aNHw9DQEHPmzMmw+84OjBw5kj6/2ux47NgxEEJgbW2NJ0+e6LxebGwspk2bBkNDQxQtWlRned7mUVFRqFSpEkxNTeHv7/97FcmGCO05d+5c/PPPP6JdDYaGhihevLho8iyECbtihPb08vLCmDFjULJkSdjY2MDe3h7Tp0/H06dP1bZTr127Nt3CrlQ5f/48CCGwsbFBcHCwKO54WrsahPbm/0ZhYWHU5kIBTd/ZsmULCCEYP348WrZsiaZNm+osHxgYKBJ2586dqzEUQ2hoKPr27SsaI+gLz58/p7+r7lrYvXs3TE1NYWhoSPtNExMTdOjQQZRYk3+XvH37loZdKVy4MPbs2YMDBw5g/fr1NO57v379JOE5roqXlxcdm/MJY3n4EEjCn3bt2ukUdl1dXTFixIhMu38Gg8HICpioy2Aw9JJjx45RUYyPUyicbD9+/JhOANu1a6fzWitXrqQDyL1792bofWdnli9fTrdWqno1CSc4ly9fRpEiRagQLvTyE5b777//6O/6PnkR1u/06dP4/Pkz/T/fLk+dOkUndAYGBiCEoH///rScqgi0c+dOOim8ePFiBtcg6+C97YsUKYK3b98C0Czsnjp1CgqFAjlz5sSlS5cA6G5Xd+/epdnFN2/enOZ9ODo6gpDUTOQhISG/WZvshdA+48aNo/1cx44dMW/ePCxYsAAODg708927d2u8Tnh4OI0TaW5ujnXr1uHr16+ZVY1sg7BdTpkyhe4SIYTA2NhYtEC4du1aKozx6BJ29b2PTA8bN27U6IWbVtzxuLg4XLt2TaOX5fr160EIwZo1azKhBllPaGgo6tWrRxdeLSwsUL9+fSiVSp1xW1WFXW0xdv38/GBpaYmgoKAMr0tmsWTJEhBC4O3tTT/j25Kvry99rps0aQIHBwca3kcul6N8+fKicWNycjKSkpKwe/dulCtXDoSkxncnJDXxJCEETZs2pQKwlJ77qKgodOjQATKZDO7u7qJjM2bMoHY+cuSIKAyLk5OTVmGXzzkA6H/4CgaDIV2YqMtgMPSSuXPnghCCESNGIDk5WeTRc/nyZY0TQOFAUPh7TEwMhg4dCkJSE4moHpcCiYmJVNRKj9fDkSNH6IB75syZomNpxe7UZ7p06QJCCJYuXYovX76IjoWHh6Nbt240hEWpUqWo+MvHc+bx9/en9l22bFmm3X9mExcXh7Vr19KYo4ULF8abN28AaN7iXqxYMRBC0KpVK1ECOSH8/79+/Uq9yrWJlTw3b94EIQRGRkZ6mSSN7y8JSU3UFx4eTo8NHz5c5BnFx3lUJTw8HE5OTrTc5cuXM+v2swXCdsYLuoQQzJ07F0eOHMHVq1exfft2unBjY2ODCRMmICEhQdQnrl27liZNLF++vMa4sfqO0JbC3/kEcfXr16eCYnrijk+bNg2EEBw/flztu+7fv49hw4ZJJhEVAFy4cAGtWrWii4elSpWiC7W63sdCYbdYsWJwcXGhwrmQqKiojLr1TOfp06f0PWFtbY0DBw7QY2/evEGVKlVACMH8+fMRExND7bdo0SIarqdYsWJq2/+/f/+OU6dOoXbt2lTMtbW1Rf/+/an4KDUR8urVqzAxMUHbtm3x6dMn+vn8+fNpf8qHpwLEyQ7btGkjEnY1xYRnMBgMfYWJugwGQ+/48uUL3dq2bds2AEhziyYvmgljawoHhb6+vrCwsECxYsUk6YGWlJSEJk2aUC8+bQi9cbt27QpCCFq2bKkzZrFUiI+PR+vWraknriZh99mzZzTWK+9BFRAQQD1UAwICRBOcSZMm0XP1daHh27dv2L59O/Vq0iTsKpVKJCcnY8KECTAxMUGePHng5uamMfQHz71792iipPR4Oh8/fjzNsA5/I0ePHqW7GlS3TAtjG/JiDh/ORhPh4eGwt7dH165dM+PWsyW8NykhBIcPH1Y7vmHDBigUCrUFMlVhlxeSrKys8ODBg0y59+yAJlGRt42fnx8VxJVKJR48eJBm3PHnz5+jUaNGIISIklBqQt9FNKGwdenSJTg6OtLdCgMGDKDH0hJ269SpA0II2rdvL2q3muLO/u2kpKRgz5491PvWwsKCCrt3794FIQTDhw+n5YV137p1Kx2LahJ2+fIPHjzAlStX8PHjR8kkRdPEnTt3UL9+fdHC4Y4dO2h/yo/neds8efKECueEqMfYZTAYDKnARF0Gg6F3xMXFoXLlyjA2NsaFCxfo5+nx6Bk0aBCmTJmi8botW7aEra2t3opnaTF27FjIZDLUrVuXbj/XZAt+UjJp0iQQQlCxYkVJJKFJD9++faMZnGUymUjY5e325MkT1KtXDzly5KCx+fLmzYuqVavSrdyEEEybNo1eV9+9nb99+4Zt27bpFHaBVE+fggULgpDUBGhr166lnmSqAi+fYbxOnTp4+/atViFCnwQKTQwdOhSGhoZYunSpSEgQbnfdu3cvXr16JUpSs337do3XEz7r+t4uVUlMTET79u0hl8vp9mF+wQFI3SXCC+jdunWj5/FtTFXYtba2lmw8yCFDhmDcuHGiz8LDw1G8eHHqrcu/z3v27EnLqIphy5Yto1u09cmD9HcR9mcXL15Ey5YtYWRkBGNjY7i6utJjup7dixcvYtCgQXTspK99pPC53LdvH+zt7WmIGT8/P1y8eBGEEBw6dEhrArVt27ZpFXa1LXZLdYwJQBTaKDw8HK1atQIhBNOnT1drk7GxsXQRnO8LhCG/GAwGQyowUZfBYOgVSqUSERERdLu2h4cHgFSxJy2PnpMnT8LQ0BB58uQRbf3iB5Lx8fH0dykOuvkYrnz4AB5VW/CTG35Ld6VKlSSdOEmVb9++oVevXjqF3devX8PV1RU1atQQbX3nvaN4jxVAOsKZLmFXuDBz8OBBaquyZcti3LhxovYXHR1NE/URQrBq1apMr0t24c2bN/QZFWZh52NI8oIukGrjPXv2oECBAmkKu4A0+8hHjx5RgeHWrVtISUnRuEukd+/e9BzVxQZhW+ZjQwuPSwE3NzcqxPL2SUxMhFKpxKJFi2gMUkIIunfvTs9TDQUgjHeqLWyIPqOtzQjHPbzHroGBAczNzdMt7Gq6lj6iTdjNmTMnunTpgly5col2ePGkV9iV0nMNiOubmJhI25imtnbr1i26sC100BDStm1bNGjQQBRyjcFgMKQGE3UZDMZfSVqeIRMmTAAhBM2aNcPWrVvTFHRjY2MxduxYGgNR1/dJbRDOExcXhx49etBJ8o4dO0THhVsvk5OT0bt3b8jlcsyYMSMrbjdbo0vY5UlISEB8fDwOHTqEXbt2wdfXF3fu3JG0J6QuYVfo9eTj4wMjIyPaVkuWLAlnZ2cMHjwYzZo10xi+Ql+9zXi0tRV3d3f8+++/9P/e3t40qdeGDRsA/LRNXFwcqlWrRu0nl8u1hmKQIhcuXAAhBDVq1BB9rm2XCN9mY2JisH79evq56t9Kau8c4ZZr1XjX9+/fR/PmzWk82IEDBwIQP7+RkZGiRchZs2bRY/r+nAvrFxUVhXfv3iEgIACnTp3C27dvaZtTTW7q4ODw28KuvqMq7NatWxeEEOTIkQNGRkY4ffo0UlJS1NqWNmG3RIkSkky6K2xLp06dwsKFC7Fx40Z8+/ZNY/lDhw7RXTc8wnH7+/fvUbRoUVSsWBEAcPbsWXpMan0mg8GQNkzUZTAYfx3CwVpERARiYmLo//lBtZeXF4yMjGBiYkIFir59+9JyqklRdu3aBUIIihQpIvKOYojx8/MTxdbctGmTxnIHDhygHhZ+fn6ZfJdZx69MgNMSdrVdSx/jFv4K6RV2T506hQYNGiB37txq3s7//POPaPFGn4QLYSI4HmF/5+npqTW2aEJCAgYNGgSZTIbhw4eLMofztp0yZQpy5MiBmjVrUnvevHkzI6ry13HlyhUQkprgjBcqLl26lGbYn/Xr14MQgvHjx2f6PWdXunfvDkIImjdvjvfv34v6u/Pnz8POzo4u3FSsWBGurq7YuXMn5s6diw4dOtC26eLiQs/Td6FHWL9jx46hXbt2NG44LyY2atQIt27dUts9o0vY1Xe7pQfeBikpKdi7dy9q165N7bpw4UJaLi1ht1KlSpDL5TAxMUkzxrM+IXzHurm5IV++fCCEoEqVKrh27ZrGc86cOaO2YwT4adOtW7dCJpNh6NChAH7aXp/e5wwGg5EemKjLYDD+KoSDtb1796J9+/ZwdnbWGEOrS5cuVDCztbWlyaZUtwvyyVdUwwow1FEqlfDw8KAeJ4QQjBw5Etu3b0d4eDjOnDmD5cuX02MzZ87M6lvONFQn1K9fv07zHFVh183NTc1jl6FOeoXdV69e4cyZM+jZsyc6dOiAJk2aYMWKFQgICKBl9HECeOTIEbRp0wa3bt0SfT5ixAgQkpq8UFN80devX1MRyNvbW+O1R4wYAWNjY5w+fRpNmjQRxTOVOvfv36d937Fjx9KVyOv9+/dUhJRiiABNKJVKrFixgi7AXLlyBYDYbleuXEG3bt00LtrI5XIULlwYixcvpuX18TkXIhQTd+/eTeOvKxQKGjKFX+AuXrw4li5dinfv3omuoSrsCuO2S03Y1bVoygu79erVo21u//79Ws8V2m779u3Ily8f6tSpo/ehK3iEz97kyZPpMzpmzBi15JxCIiIi0KJFC8hkMtSpU4cKu2/fvsXu3bs1Cr4MBoMhRZioy2Aw/hqEA8P58+fD1NQUhBCYmpqKBAhhDNz69euDkNSMxT169ICXlxf17D1//jwWLFigcSu21CYw6YG3iVKpxNatW9G8eXPRRJpPUMVPJoUJ56RkT16gmTdvntqkWROfP3+m58hkMixZskTSwm5ak2me9MbYFaL6uT62ywcPHtBnsFOnTnj06BEAYPTo0fRZPXnypNZzTU1NkSNHDpw/fx5A6t9DqVQiJSUFMTExcHBwgKWlJV6/fq0x9rjU6du3LwghKFq0KH1HaRN0gZ8J++rVq4dXr15l9u1mWxISEqg3eKNGjeh7W9g/vHv3DsePH0fz5s1Ro0YNlCxZEuXKlcPSpUv1fuFGG/wuGUIIxo0bh1OnTuH9+/c4ffo0pk+fThPN5c+fH9OmTcP79+9F5/PCrpGREaysrDBy5MgsqknWIWxjb968wfnz53H+/HlRO+KFXeEY88CBAxqvwZfnOXbsmM5YsvqE0A4uLi60bW7dulXkLa5qWx5PT0/ky5ePvtPs7e1hY2NDryNceGAwGAypwkRdBoPxVyAc5PHxcgkhmD9/vsatv3z50NBQKj7K5XIQQlCmTBlUrFgRMpmMfjZ9+nR6rr4Psv8XhH+H+/fvY/r06WqeUq1atcLatWtpOanZk0+kYmVllW5h99SpUyhatKjOGLtSQNhWoqKi8ODBAwQGBiIkJERj3D1dwi4vnvGipOr19RU+hIKFhQWMjY3RpUsXdOvWTeRBCmgWz1+/fo3SpUvDyMgI8+bNU2uD+/btAyEELVq0QHx8vCjWpL6jq47CeJo7d+4UJZNr0aIFLRcfHy86z9/fn5bj4xdLgbRCx/DP6datW5EzZ04UKVKExsvU9ndISUlBXFwc4uLi1D6XCk+ePKFJYmfPnq12PCEhAffv36dlChQogHXr1iEpKUm02HD58mW0atWK5iWQkg2FdT1+/Djq168PhUKBGjVq0GRdqqEY+Hf+rwi7gDTeRzx8iBlCiMhGQNrJ9lauXKmWNDZHjhws9jODwWD8P0zUZTAYfxXTp0+ngzovLy/RYFDVC084oB41apQoFiz/06FDB2zZsoWWYwPDtFGdqLx69Qr//fcfLl26hAcPHogm1VKyp3DC1r59ezrJmzt3Lg39oY2oqCiULVtW1DZnzZqlJlDoM8K28u+//6JJkybUFvny5UPZsmXh5eVFRVseXcKulNof8LO+0dHRGDduHExMTKBQKKgdVUUJTQwcOBCEpGZ3nz9/Pq5evYpbt25hzZo1khQgAXE7evDgAc6cOYPLly/jwYMHamVTUlIwfPhwuvW9Xr16OHHihKjMmzdvsGHDBo3eZvoYK1tYJ+E7m/fU01bnJ0+e0Nibw4cP13pt4fn6aL+04Ot86NAhmJiYwNbWFh8/fqTHVG0SEhJC+8sSJUpo7C/Pnj2L8ePHixbH9B3VEBaGhoYghKBJkyaYN28eEhIS1MryydPSK+xKDaVSiW/fvqFNmzaQyWSYM2cO/VzVNrt378bSpUvh4uKCu3fvivqKu3fvYsOGDRg8eDCWL1+O48eP02NSe88zGAyGKkzUZTAYfw3e3t4wMTHRGO9RKFKkpKQgPj5ebfX/06dPOHr0KLZs2YLdu3fj9u3bIs8pNjD8NdKarOj7ZEZT/YSTvnbt2v2SsOvo6Ij27dtTUW3UqFF//J6zK0Jb8p74vBiZI0cOKn4ZGxujd+/eoizXgGZhV1sMbX1HWN+KFSvS3Qh169bFy5cv6TFtXmQJCQlwcHCg9ra0tESePHno32Dq1Klar6GPCN8L06dPR+HChUEIgYGBAXLlygVXV1d8/PhRZIvk5GT07t1bJKg7OztjwIABGDp0qMjrTBj2R9/eQXfv3qW/q7aV6dOno3v37rh69aroc1UbrFu3DoQQGBoaqonjUkLXzg3etoMHDwYhBI6OjlrL8s/55cuXaVvu06ePzgScUutDfXx8RAsuYWFhGnclCG0mFHbNzc1FsWKl5OmsicePH8PY2BgKhYLuFOFj30dERMDHxwctWrQQLWqbm5tj27ZtWkMp8UjdtgwGgwEwUZfBYPxFTJw4EXK5HAMHDkRCQgKSk5PpgC4pKQlRUVGYPn06OnbsiPr166N///4IDQ0FoH3gp2siw2BoQyg8vH79WhS/UTgJ0SXsqsaGLFSoENq1a4dv375h69atGsvpOytXrqSTusWLF+PAgQO4desWFi9eTD13DQwM0LBhQzo55FEVdgsVKoTg4OAsqknWs3nzZmpLIyMjmJiYoH379rh9+7bWc/h+MioqCp07d6ZJvgghKFKkCGbNmkXL6psAmRZTpkyhtsiVKxesrKzo/7t27YorV66oLS5Onz6dxoUV/sjlclSsWBErVqyg5fXNnl26dEHNmjVx5MgRtWNTp04V2WLUqFHYvXu3qAwvJP7333+wtbWFgYEB5s+fD0B6Qs706dNhY2OjMSGsEN5DvHbt2khMTNQpxn758oWGZWnYsOEfvuO/l5s3b9JQSKohLDS9i7V57ObMmVMtzIBUCQoKQs6cOSGXy7Fp0yb6+bNnz9CzZ0/qjW9hYYGyZcvSuM/W1tZ0YUhKoX4YDAbjV2GiLoPB+CuIjo5GkSJF1DybAODjx49Ys2YN6tSpozZ5trGxQVhYGADNHhYMxq8iFF/Wrl2L2rVrgxCCHj160M+Fk2lVYVeYDIm/1qZNm6iQKUTfPaT4+vNbNOvWrQuZTAZ/f39ROaVSicTEROrFrFAo0Lp1a9y4cUNU7tu3b9ixYwcVdmfMmJFZVcl2eHt7w8HBAf7+/nBxcYGJiQmMjY3Rvn173LlzR+t5wr7x/Pnz2LVrFw4fPiwSg/VNgEwLX19f+k7ZsmUL7t27h4CAAMyZM4d+3rZtW5w/f17tPXP//n2sWLECvXr1goODA5ydnbFr1y7R30Df7Hn27FlqFzs7Ozx+/Fh0/NmzZxg/fjwaN24sel936tQJ+/fvp+9snpEjR9I+9MmTJ5lZlSzn+fPnMDc3ByEExYsXR0hIiFoZvs1NmjQJhBCUL1+eevbqalv8wo+ZmZko6aEU4fs9Dw8PGBsbw8HBgdowvbuSeGG3Xr16tE3zCSelilKpxLt371CrVi26Y2Ts2LGYM2cOLC0tabseOnQoXr16hcjISJw+fZq+wydMmJDVVWAwGIxsDxN1GQzGX0FKSgqaNm0KmUyGESNGIDQ0FAkJCbh79y4aNWpEJz1FixaFi4sLGjZsSFf/+/Tpg8TERMkKuaqTOn0TEDIToe1cXV2pwNi2bVssXLhQVFaTsGtubo7Ro0dTz97IyEi61VOhUEhqe7HQlt+/f8e3b99ACMGgQYMAiL3ohUIZL/AYGxtj5syZase/ffuGdevWUa8+KSCsv9CufFzNuLg4jBw5Mt3Cbnq/Syq4uLhALpdj7969asf27NlDBZw2bdqoCbtCUlJS1I7pqz35xEijR4/WeDwpKQmfP3/GggULUKdOHZrdPnfu3LC1tcXhw4epgPv+/XtUrVoVhBC4uLjgx48fknmfx8fHw9vbG8bGxihZsqTOsjdu3KAhqoYNG0Y/19bGdu7cScVyfleTlImLi6Pi46+KibyNlUolvL29UaZMGVSrVk3vF2bTC5/0kA9Jw//bunVrnDlzBl+/fqVlY2JiULduXZ2xtBkMBoPxEybqMhiMbIXqAFj4/xkzZtDJc+PGjdGoUSMab7Ny5cqi7e3v3r1D27ZtQQhB8+bNM7UO2QmhwHP69Gn6u1QmxH8Soc2EW7G3bNmC8PBwjeWE7bdTp040NqSxsTFatGhBhQope5V27NgROXPmxNWrV5E/f34sWbJEYzlhW+7cuTONt6spWZUwVra+T6qFdrl58yZ2796NS5cuqR1PSEjAqFGjtAq7KSkptO3evXtXdA2polQq8ePHD9SqVQtVq1bF169faYIf4XO+f/9+rcKu1BbRhAKiMF7uihUrRNvRheWCg4Ph7e2NihUrIm/evNR7tEaNGlixYgXevHmDXr16gRCCGjVqICYmBoB03mNxcXE0ySGQGvNV1WNZqVQiIiICzs7OUCgUyJ07t9bwHrztZ8+eDUIIunXrlsE1+DuIioqiHqKenp4AdC+6aEvQl5KSgrNnz1Kb6/s7SBdCu3h5eaF3797Ily8funfvrrYziX8HffjwAdWrV4dcLoeXl1dm3zKDwWD8dTBRl8FgZBuEg789e/bQ3/mECsDPmHHCH2dnZzx8+BCxsbEAfk5e+Lh95cqVQ3R0tN56RGlDWN+xY8dq3N7P+HW2b99O297BgwdFx9JKMjNmzBiULFlS1H5NTEzg6upKy0ipnV65cgUWFhbUQ48QIhIiVOGf7fv376NUqVIghMDNzQ2AdAQeIUKhZtWqVShdujSMjY3RvHlzUTxhXcIuH1aBt9/JkyehUChga2srChUiBbQJsLVq1YKzs7Pa5+kVdqWG0GsRAIYMGUIXWIWxsFXFrvfv3+Pw4cNwdHSEgYEBtWfHjh3RpEkT+plqCCYpwXvXVqhQAc+fP1c7fvjwYRQqVAiEEJQqVQr//vuvxus8fvyYllu+fDkAafahPEqlEp8+fYKNjQ1kMhmWLVtGP0+LixcvYt++fRr7D6kt6mhCtR/89u2b6P+q/QAfFqR8+fK/vaOEwWAwpISCYzAYjGwCIYTjOI4bM2YM5+HhwV26dIlbv349Z2hoyCUmJnKGhobcunXruCpVqnCvX7/mcuTIwZUvX57r2LEjvQYAjhDCxcXFccHBwRzHcVyXLl04MzOzLKlTViKTyTiO47gVK1Zwq1ev5jiO44yNjbmIiAguT548WXlrfyUAuPj4eO7EiRMcIYSbPn065+TkJCrDt2EhCoWCS0lJ4eRyOefu7s517dqVu3XrFvfff/9x5cuX5ypUqMC1bt2a4ziOlpMK5cqV45YtW8a5ubnR5/XixYtcnz59uFy5cqmV521TpEgRzsjIiOM4jnv69CnHcZptr88I28r06dO5xYsXczKZjGvfvj3n5OTElShRgpaVy+VcSkoKZ2RkxC1btozjOI7bsmULd/LkSS4pKYmbNm0aV7duXe7w4cNc+/btOY7jOEdHR6548eKZXq+sQmjP48ePc8+fP+c+fvzI2dnZcUWKFOG+fPnCJSYmcjKZjFMoUofPhBD6znF2duY4juO6devGHTt2jB5v0KAB7YulAl9f/pksW7YsJ5fLubNnz3Icl9qXtm7dmlMoFJxSqeRkMhkHgCtYsCBXsGBBrm3bttyePXu469evc2vXruX8/f05mUxG/z45c+bMmoplMcnJyZxCoeBy5crFPXnyhOvevTvn5eXFlS5dmtqxbdu2XEREBDdmzBju5cuX3KxZs7j//vuPc3Fx4YoUKcJ9/fqVCwoK4saOHct9+PCBc3Jy4saOHctxnPT6UCGEEC5fvnxcuXLluODgYG7Tpk1cp06duGLFiuk879OnT9zMmTO5+Ph4rnr16pyNjY3ouJTe59rgn2++fVlYWNBjfJvm8fPz4wYPHsxxHMcNGDCAq1atWubeLIPBYPyNZKWizGAwGKqEhISgY8eONC7c0KFD6bGEhASt56mu9Ht5edHsuVKKUwqIvSJCQkJQsWJFGBgYqCWfSu81GD+5f/8+DA0NQQj55XaVlk2lavOoqChs3LgRxYoVAyEE//zzD00uo8vLqUuXLiCEoGfPnpKznbC+48ePpx6NHh4e+Pz5s8ZywM9+MiEhAaNHj6Ze0lZWVnBwcKDXmThxotZr6CPCOk6ZMgVGRkZqO0JKlSpFbavaLrV57LZu3RonT57Uaw9I1bpp22q+YcMGGkezefPmOHr0qMZrqNr29OnTGDZsGPUqHTVqlNbv1heEibdUiY6Ohq+vL7VH9erV8ezZMwBi2+3YsQNly5aFsbExCCHImzcvChYsCCsrKxq2ysHBgf69pOZRqtp2eFu7u7vDxMQEuXPnxsKFC2myNFX48kePHoWZmRnq1q2rluCPkX6Cg4OxcuVK2ne6uLjQY1J4BzEYDMb/AhN1GQxGtuO///7DoEGDNAq7iYmJauVVJyPe3t50YDhv3rwMv9/shNAWsbGxePjwodoAOS2Ek3I+0ZK+Tp5/lfPnz8PIyAglSpSg2cJ12Ua1bQrjlrKJyk+ioqKwadMmGpqiePHiePfuHQD1rdwA8PnzZ5rQZunSpVlyz9mBZcuW0b7Oz89PdExTXwmIQzHMnj0bVapUodewsLDA7Nmz1cpKBT7GKCEEVatWRZMmTWgcbEIIOnfuTMvqEnaF7yA+Nqe+wdc3MjISQOpzKmxzI0aMEIVRAlKTp6VH2FUlNjYWr1+/hoeHB/1Mn9om38dFR0fTz4S29Pf3F/Vz8fHx8PHxSVPYPXv2LMaPHw8zMzPRAkX16tUxZswY+q6XQszX9I5hQkJCUKZMGRq6a/369bSNq9opKCgIRYoUASFELVEqI32Eh4dj6dKlokVFKb+DGAwG43dgoi6Dwcg2CAfd//33HwYMGKBR2NU2yLt9+7ZoUi6Muyc1AW3MmDHo1KkTFi9eDFNTU/j6+v7yNYYPHw5bW1s8fvw4A+7w7+TAgQMghEAul4uSAKXnPKmS3kQzvLDLx8otWbKkWjIgnr1794IQAlNTUxw/fvyP3/PfwIsXL1CzZk3I5XKsWbMGANQSeAGp8R4PHjwIPz8/mmCKJykpCbdu3cLixYvh4eEh8j6X2mT62rVrsLS0hEwmg5+fH6KiogCkxijt1KkT9W4cNGgQPUeXsLt9+3ZRWX2Efw4DAgJEn48bN46+h8PCwkRi2O8Iu6p9iD62zVevXqFJkyZqiwDbtm0DIQS5cuUSxRdNr7DLX9vX1xfbt2/HwYMH8fHjR2prfbSlKsJ29erVK1y5cgVz587FypUrcezYMZpgl+fevXuwtrYGIQSlS5fGpEmT8OLFC3r806dPOHPmDIoXLw5CCLp27UrtyBbAf409e/bQvsLOzg7r16+nx6TQNhkMBuNPwERdBoORbUmvsBsdHY0hQ4agVKlSkMvlMDIyEnlNSG1gyCeZyJ07N6pXrw6ZTEaT06RX3OYn5WZmZhg8eDDi4+MlZ0dNPHv2DIULF4apqSmWLFmC5OTkNCdxV65cASEEw4YNy6S7zD4I28ytW7dw6tQp7N27FyEhIVRgFJZRFXYLFy6M1atXIzAwEEBqcp+NGzfSSeC0adMyt0KZyKVLl3QeP3XqFAghyJ8/P+7fv4+UlBRqy6ioKFy4cAFOTk60/+Sz3F+8eBGA7r5ACotg2kL2rF27FoDYBnfu3MGgQYNgamr6S8Kutu/SB0JDQ6m3vLGxMa5fvw4AGDVqFPVuPnz4MC0vtOfveuzqKzExMahZsyYIIahWrRq2bdsGANi9ezd9dhctWqR2ni5hl7d3ehfV9BVhHf39/WFnZwdLS0uR57K9vT2WLFkiOu/ChQvIlSsXbd+WlpZwdnZG3759UaVKFSr6tmjRQrIhLP4U8+bNg5ubG+7fv08/k8I7iMFgMP4UTNRlMBiZjuoEV9eENy1hV6lU4vXr16hRowYIIXBycsLu3btFZaRGaGgounfvDmNjY8jlctEW4PRO4p4+fYq8efOCEIIqVapIZoAtrKdw+ytvt+/fv6NatWoghMDW1havX79WO0+VefPmgRCCcePGSao9Cm3i6upKhQc+q3W/fv3w6tUrAOI+gBd2bWxsqDeugYEBKlWqRNuzQqHAjBkzNH6XPtCiRQsQQrB9+3atZdatWwdCCAoWLIj379/Tz4ODgzFy5EiUKFGC2i9PnjzU9j169NAamkGKLFmyBH5+fhgyZAhy586Np0+f0mPC/vL+/fvpFnalQEJCAvz8/NCoUSO6e6FTp060nfELiUIbMmFXO5s3b6Z9XrVq1TBo0CBqy8WLF9NyqrbRJewKkaJNhXXeuXMntWetWrXQrl079O7dGwULFoSBgQEIIRgyZIjo/CdPnqB27dooUKCAWoztokWLYuDAgZIKYfGn0dZvSrGtMhgMxv8CE3UZDEamIhys7du3j/6ua1KsKuwOHjxY7XpPnjzBqVOnROKGvgk96YG3Y3h4OLp16wZzc3Mq/Ai9IHTBT07u3LlDPVUOHjwIQL8H28I2eOHCBSxYsIDWG/jZns6dO4f8+fPTyWFERITaNXg78eEacuXKJbmEfTzTpk2jok+uXLmQM2dOUfKpoKAgAJqFXV6YJISgY8eOmDx5MhYvXqzXYQLev3+Pxo0b03rfvHlTdJxvWzdu3KBCTvfu3eHt7Y0tW7ZQASJfvnxwcnLCrVu3cO3aNcydO5deU+hBKWWGDx8OQghatmyJFi1aoGzZsmohKoQwYVdMTEwMTp48SYVd/ufGjRsANL+DmbArRljP3bt307ji/I+bm5vGskLSK+xKlcOHD4vitYaGhlJbPnz4EIMHD6YJ5fgkkcKx1Llz5zBhwgT06NED3bt3h5ubG27cuEHbMhN0GQwGg5GVMFGXwWBkCcOGDQMh4kzWurax3r59G05OTtRTTziZ1jTRkcqEUBP8RCM8PBxdu3aFmZkZ5HI5OnfuLIoLpwulUonExERMnToVMplM7xPOCdve0qVLafITa2trPHz4UFT28+fPmDt3LhW8a9SogQsXLojE3dDQUOzYsYNOJFW3dkoFf39/aoPdu3fj/v37CAoKwujRo2kymly5ctHYuZqE3WLFitEYu3xyuvRsLf6befToEZo0aYK+fftqLRMZGYlevXpRgVGY0Ktp06bw8fFBeHg4Lf/69WuULl0ahBBJx3gWcvbsWfpOMTIygrW1NYKDg3WeoyrsCr37pPreadmyJQghkMlkkMvluHfvHgDtQrc2YdfR0RFHjhzJlHvOTgjtMXDgQMhkMshkMuTPn1+0+K2rv1MVdmvUqMGEXQBv376liw7CcD182/zy5QtsbW3pDhJhn5me51lf30E8qvWTah/HYDAY2Rkm6jIYjEwnNDQU/fv3p0KELmFXyMGDB0UeLMJQDPo+sFYlrYE1L47xHrsGBgYwNzdHv3798PLly3R/Dx8PtlWrVun63r8RYZubMmUKFSeGDh2K/fv3azznxYsXcHFxodvaixQpggYNGmDGjBkYPny4yNNy8uTJ9DyptdPJkyeDEEKFCb7+nz9/xo4dO1ClSpV0Cbv8tuSSJUvi48ePAKD3IQRCQ0Pp7wMGDBAlUOKfw5CQEIwaNQqVK1cGIQR16tSBi4sL4uPjaVm+fd++fZt6SV++fDmTapF94dvipUuXqLBraGgIV1dXnd66wE9hl98J0blz58y45WzJkSNHaF/Hi2NyuTzN2M2qwi7vKVm9enU8evQoU+49u3H79m1qS37RsFKlStiyZQstk5awe+DAAbooWahQIbUkYFLj2rVrsLKyQpUqVeiCDf/uCA0NpaG7KlasiMjISADqnrfCHThSeocL7XD37t0svBMGg8Fg6IKJugwGI0sICgrC+PHj0yXsCoXExo0bw8zMjGYi79atW6bdc3ZBNUncvXv3EBAQgPv37+Pdu3dq5cPDw9G9e3coFAqYm5ujb9++vyTs7t+/X28FNGHbcnFxoe1xw4YN+PbtGz2mabHh7du38PT0RMGCBdXi7fFCr1QT9qWkpCAhIQENGjRA7dq18fXrVzoZ5m0eExMDLy+vdAu7fPI0obArhW2va9eupW1qx44d9HPenrGxsYiPj8fDhw/x9etXteO8vVeuXAlCCBo1akQ9nqUOb6MLFy5QYbdGjRrw8/NDQkKCznPv37+PgQMHqu0ckRpJSUmYNGkSfHx8EBAQgHr16lFhl0/2l15hlxBpJpTkefr0Kfr164d169bBz88PxYsXp2I5nzwNSFvY9fX1haGhIQoVKiSp944Qvt9zdXWl+RaEomxYWJhI0P3y5QsA4MePHwBShV9hfG0pM3z4cDg6OqYrMSyDwWAwMh8m6jIYjCwjKCgI48aN+yWP3Vq1aqFSpUo0w7Ywvq4UENrF3d0dTZs2pfYzMjJC3rx54e7uThN48fyOsKs6cdRnAW316tXUjv7+/qJjadX7/fv3mDZtGrp16wZ7e3vY29tjzZo1VNAA9F/Q1SYytG/fHs2aNdN6HhN20+bevXvo2LEjbZ/C5GlKpVLjJFvVJn5+fvT8devWZfg9Z1eEz2FKSopI5Ll06RINA1CvXj0cOnQoTWH3zp072LNnD/2/VAUPvt5xcXE4dOgQ6tevT3c8aPPY1WSrK1eu0N+l5BEphPcWBYBdu3bR8DO6hF1VW33//h0BAQG0H9D3948u+N03w4cPp59pE3SFi9fbt29Hq1atJL+rQRhC6dq1a1l9OwwGg8HQABN1GQxGpqBtApJeYTclJQXv379H6dKl0adPH1y/fl3ktSaFybTQbhMnTqTeUAUKFICdnR3Kli1L7dijRw+cO3dOdL4mYZffjigF+2njy5cvaN68ORQKBU1Ko0ks8/X1xdq1a+Hp6amWvEqI6gRb38UJ4XPq7++PpUuXYuTIkViyZAnatWsHZ2dnANrtoEnY1ZU8jRd2y5YtK0qMqM88fvxYq7CrirDdhoWFYcOGDRpDgUjhmVcVs+Li4jSW4ctdvnz5l4Vdbd+lzwjbjmpyyISEBBw+fFirsMuL6QBw4sQJUTJK1WvqO9rsKPx8z549OoVd/rzQ0FDs3LlT7TukYktteHp6ghACe3t7xMfHaxV0he+ad+/eoXbt2iCEiJL3SZEfP37QmMS9evVCdHR0mu8Oqbc5BoPByGyYqMtgMDKEtISs9Aq7wM8B4tatWzUmnZLaAHLmzJnUVtu2baPJUEJDQ0UepzVq1KBx0ITJ03hh18rKCn379pV8MpU7d+6AEAKFQoGzZ89CqVTSNvX582ccOXIEjo6OotAKdnZ28PDwoNfQ5TWlzwjrOnXqVBgZGVEbGRgY0DilV69e1XkdVWHX2toaDx48UCvHC7vlypUDIQRVq1bVmy2haSV8/BVhNzk5Gbt27UK3bt1o+enTp4uO6zvCOu7cuRNjx45FiRIlYG9vjy5dumDXrl148+YNLcu35f9F2NVXVPu0z58/a7QJX+7Hjx9qwu6FCxcA/GzTp0+fpm1TSjF0VZ/zpKQk0cICj/D/qsLu1q1bRWVDQkJoqAY/P7+Mu/m/kMOHD4MQghw5cmDLli2ws7PTGkOX/9vs3r0bOXPmRJMmTRAVFZVVt57l8AlzJ02aBEIIKlSoQEP3aHvnCvsKf39/yY8vGQwGIzNgoi6DwfjjCCcjDx8+xL59+zBu3DjMmTMH7u7u+Pz5M2JjY0XnqAq7AwYMwKNHj5CQkICoqCh4e3tTz9RTp05ldpWyDX5+fjAxMRGFCVC1Nx9vWDV5j1DY7dmzJ40huWvXrky7/+zIuXPnQAiBlZWVaALy7Nkz9OvXD4ULFwYhBObm5jQRECEEtWvXxv3797PwzrMPs2fPpnZp3Lgx6tatS5P1mJiYpGvxICYmBnv37qVJv4RepUKioqKwZs0aVK9eXW+Stwif4SdPnuDGjRsay6VH2E1MTMTYsWNpf1mqVCmsXr1a43fpK0JhQRgrmxcY+ee9bNmyCAwMBCBOgsSE3Z8I24uXlxeGDx+OPHnyoFy5cmjYsCF8fHxEsdx1Cbu8yOPr60v/HiNGjMj0OmUVwnYZGBiIpUuXonHjxqhfvz769+8Pb29vUXmh96hQ2C1fvjw8PDwQFxeHhw8f0t0L9evXl8Tz/au0a9eOLtwSQlClShVEREQAAH2ueZHywYMH9J2/cuXKrLrlbMXr169pUlhVpwttdOrUiS4matohwWAwGIw/BxN1GQzGH0U4oVi4cCFKly6tlkCqUqVKmDBhAl69eiU69+nTp5g8eTIVGytUqAA7OzuaeIUQgpkzZ2Z2lbIVrq6ukMvlGD9+PACoxYQ0MzOj2+R4hBNJfpIYHh4OR0dHjB49OhPvPnsSGRmJ8uXLgxCCUqVKwcPDA3PnzkXu3LlBCEHRokXRq1cvPHz4EFFRUdi4cSNtjxs3bszq289ybty4AWtraxBC4Ovri7i4OMTExODVq1do0KABCCGwtLTEuHHj8OLFC53XiomJwZYtW7B48WKd5b5+/ao3HlTCPnP9+vV02++///6rsXx6hN0HDx6gSpUqmDFjhqRiO6syZ84caqfOnTtj5MiRGDNmDIoWLQpTU1MQQmBsbAxfX18A4u3sQmG3YcOGOHToEOLj47OyOpmOsL3w7x7enlZWVvTZ7tq1qygkjVDYPXr0KBo3bky990uWLEmF9QkTJmj8Ln1E6Nm4b98+5MuXj9pB+DNx4kQaVxwQC7teXl4oVaoUZDIZ5HI5qlatirx584IQgqZNm0oqhq7QnikpKUhKSlJbeOFj5F68eBGVKlWiwq6mkApKpRL37t1DiRIlQAhBly5d1EKLSBH+WXZ1dYWBgQHq1atHF3G02eXmzZsoVKgQXdS9fv16pt0vg8FgSBEm6jIYjD+GUDycMGEC9c4pWbIkmjdvjrJly9KJtJmZGerXry+avACpSac8PDzo1m3e28zU1BSurq4av0sqfP78GSVLlgQhBPv27QPw0w5XrlzRKOjykxyhZzQ/0YmOjqafSWESqAmlUomkpCSsWrWKejsJfxwdHXH8+HFR8hoA1Pts0aJFWXTnWYdqEq6dO3eCkJ8JuIQTvbi4OLRv356KQOkRdvns45q+S98QPnd8WBVDQ0PUqlULCxcu1HqeLmGXv6bw+Qak12dev34d1tbWkMlk8PPzEwmyoaGhmDdvHg33YWxsjJMnTwL4uR0eSBV2+ZAi5cqV0xgSRF/R9D4nhGDSpEnYv38/wsPDMX36dOTIkQMmJiawt7cXJVLiz09MTERgYCBtrzKZDMWLF8eCBQtoWX1//wj7xF27dokWGtzc3HD8+HGsWrWKft61a1eRECbsB/39/eHo6AhDQ0Mqqnfv3p2W0fc+ExDb89ixYxg7diwaNWqEVq1aYdu2bXj8+LGofExMDDw8POg73szMDK6urjh06BA+fPiAc+fOYcGCBShYsKDkBPL0vhdOnDiR7sXsmJgY7N+/n+664d9l+m5LBoPByCqYqMtgMP44ixYtooM/Ly8vhISEAEj1Dg0MDESNGjVoCIGqVatq3JZ9+/ZtLFu2DL169cKyZctEyVSkOjCMiIigHmbCybM2QVeYyblr167YsmWLxuvqu9iTnvpFRETAy8sLjRo1Qv78+dGqVSvMnTtXdC6fwObp06d0e+ahQ4cy8tazNcOGDcO5c+ewc+dOyGQy3Lt3T3Scf07j4+N/WdiVAsK2NX78eNpnrlq1SrSdXZs3lC5hV4qeZapilp+fHwghWLZsGQCxyAikit779u2jSZNy5syJhw8f0rLCUAyEpCaflCJLly6lbezAgQMicXzKlCmiRTA7OzuNwi6Pj48PTp06JfLqldL7/OjRo6JdR1+/fqXHAgICRLbs1q0bDQ0CiNv3ixcvcOzYMSxfvhwnTpygdpaCoCtk9+7daguxhBC0aNFCLaxUVFQUNmzYQGPq8o4DfEgL/qdjx46SEciFz96nT5+oE4C2MdOwYcNACEG1atXw+vVrndf+9u0bXQxq27btH7tnBoPBYKjDRF0Gg/FHuXXrFmxsbESxWlUnHG/fvkXfvn3p9s2OHTvS5AuAbkFC3wVIXYSHh6NMmTIwMDCgIvfly5c1CrrCyQjvYZEjRw58+fJFUoKPcNLy8eNHXLx4EV5eXjh69Chu3bql8Zz379+LvEVVt2Dy2bSrV68uWXFy+fLldBLcqlUrlC9fnh7TlNE9Pj4eHTp0YMKuBhYuXEhtyYcB4BEuzGhCVdjdtm1bBt7p38Hs2bPh7u6OMWPGwMTERGeSvtjYWGzevJm+s3r37i3ycObfN8HBwWqfSYGbN29S2+zcuVN0zNXVlba7Ll260IWuWrVqiWwuDBGkipRsGRwcTHd4CHcdAaA5A/jdIUKPXaGwq0sAl5I4Dog9R52dnTFw4EB07dqVeoMXK1YMa9euFZ0TFxeHBw8eoFu3bihatCgIIXT3WOfOnbF69WpqR30XdIV06dIFZcqUwbBhw/DkyRNRWxI+v15eXjAxMUGuXLlo4kNdz/DLly9RoEABEELoghmDwWAw/jxM1GUwGH8ULy8vEJKaofn9+/dqx/kBYEhICE2kULhwYezfv190XKpoElyFA+wuXbqAEIJmzZrB29sb5ubmOgXd6OhojBgxAgYGBpILFSC029KlS1G9enWRR45cLsfgwYNx8+ZNkYgrRHVi5+/vL/KolCLJyck4cOAAjZfLLxhoE8+0CbsTJkyQvLAbGBhIPcV4T3pNfcCnT5/w4MEDfPjwgX7Gl3v8+DE6d+5M/xb6Hr8wODhY63uCFxrr1q2Lhg0bwszMDI8ePdJ5vYiICDg5OYEQgooVK9IESpqQmnA2f/58EEIwe/ZsUQgfYWJEfrcCn5zPyMhITdhlpAq3hoaG6N69O8LDw+nnwnfKtGnTAIgXzbp06SISdqW0KKuJlJQUJCQkoFu3biCEYP78+aLjmzZtQpUqVSCTyZAvXz6sWbOGHhPa7sWLF7h06RJu3ryplphS359zYf2E4ji/Y2H48OE4cOCA2nlJSUmoW7cuCElNiBoTE6P1O/g+2t3dnSXwYzAYjAyGiboMBuOPwm+3at26tdYy/MA6ODgY+fPnp95+Ukc46A0LC8Pdu3fp/3lxcdeuXbC2toa5uTmNqdevXz9aTtWzb8eOHSCEoESJEpKaZGuL71yhQgW0bdtWlHyvfv362Llzp1qGZuEE8N27d/Dw8BDFldT0XVKBT4BUp04dapPVq1cD0L0wIRR2LS0tMWDAAJ0imr6zZcsW6vXNC7a8rWJiYhAUFIQ+ffqgTJkydLFszJgxatd5/PgxGjVqpPchApo2bYqqVavi1q1bGp+7gIAA6jFqYmICExMTnR5lfFu9cuUK9djz8fHJ2Er8JURHR6Nnz54oWLCgKKSCUHDcs2cP/fz79+904czQ0FAtFIOUSU5ORseOHWFkZCQKJXX69GmaLG3KlCn085iYGPTs2ZPauVOnTnq/WPMrfP36FYULF4aTkxPtL4XjJ19fX9SuXRsymQx58+YVCbvaFnClgnCh+s2bNwCA//77D+PGjaPPL98me/XqhfXr14sS0O3btw85c+ZE4cKFcf78eQC6x0CRkZH0OBN2GQwGI2Ngoi6DwfijjBw5EoQQlClTRmd2en6Qt2TJEhgYGKBYsWKiOJJSQzjY3bRpE1q0aAEzMzOMHDlSVC4sLAxNmzalA29bW1t8/vwZANRESaEH0PLlyzO+EtmQuXPniuI788JZfHw8rl27RkOA5MuXD2fPnlU7PyUlBatWrUKbNm3odWbNmkWPS3mS8uPHDxw5ckQkkPM21DTJ0xRjVyiOSxEXFxcQQtCkSROR2PD27VvMmDEDFSpUoCKZMA7k+PHj1a4lDGGjj+3y9u3btJ1Vq1ZN7X3BC7RXr16lwi4hqUmPvnz5IiqjyrNnz+gCo7e3d8ZWJBsiFHqE7fD8+fMiEfLs2bN0OzW/iAP8XEzcuHEj5HI5zM3NIZPJULNmTVy8eDETapD9+e+//zBt2jRq6ydPnlARbdiwYbSc0MNR6EHZvXt3SdqSf2aFz+7bt29hZGQkehcD4veOn5+fSNgVtlcpLcSePXuWOggIF/379+8PQghtUz9+/EBsbCzmzp2Ltm3bitpe1apV4enpicePH+PLly8oXrw4CCEYMWJEuu9D6h7mDAaDkZEwUZfBYPxRdu/eDVNTUxQqVAjHjh0DoHkwx3/Gh2uwtrYWxS2UEkIBZsaMGXQg3aRJE5EYK/Rw5rM0FyxYEM7Ozrh69Sq+ffsGINXrbMmSJZL3Kj19+jRy5coFQgjdSii0dVBQEI1H3KFDB7Xz4+PjRRnJq1SpgnXr1tHj+iicCdE0meZ/59sRL+wKQzHo8t7hbRYXFyfKoC3VCd+8efNACEGePHlw+vRp3L59G6dOnUK5cuVACIG5uTns7e1x8OBBuLu7w87ODjKZDBUrVsTLly8BqNtOn5/xQ4cO0di3qvCJDIHUWONFihQBIQR58+bFkiVL6FZhTW0tMDAQOXPmhFwuR0BAQIbWISvh6/7+/Xu6CCjsx1xcXODm5kbfJaosXrwYCoUCHTp0QGhoqNrx06dP03cXH4vXzc0tA2ryd6HpmfT29oaFhQVq1KghShbLl3358iWsra1RrVo1jQuKUkBot8jISISGhuL169d49OgRSpcuDT8/PwDiRQnh861L2NX39zeQKugSQlCoUCHcuXOHfj5mzBidC7Hfvn2Dn58fWrduTRdxTE1NYW1tjU2bNtHQF1ZWVpJcaGAwGIzsBhN1GQzGH+X27dvUm6x79+50sK1NaNi2bRsIIcidO7ckPXWFE5BJkybRgbanpyfdGicsx09Enj9/TrdkE0KgUChQunRp1KpVC0ZGRvRzYUIWKUxihPBZ2/v164eEhARRwg9tCeZU2+nz588xePBgrFixQpRYTd9tqVq/T58+ISoqCh8/flQrywu7DRs2pO2OF8Y0CWiqcYr13Za6bBAZGYlatWrRhS1LS0v6/Nrb22PTpk2i+JteXl6QyWQwNDTUmuhP3xHGyF22bBmuXbtGn1uhsHvlyhXqsVuhQgWsWbOGJkHjvVFVvSIrVKiAp0+fZmZ1Mp3du3fDysoKO3bswPfv3+nnfExcMzMzhISEiM5JSUlBfHw8fefwsV81XZsQgs2bN2Pq1Klay+kzwveMtsUqpVIJZ2dntfePkHPnztFwIO7u7ihXrlyaiRP1CVVxtnnz5ihUqBDy5MlDd3r07t1bZ1gV/lxe2M2XLx88PDwy5f6zGqVSicOHD1NRtmzZsnj58iXGjRtH39MnTpygZYX/8kRGRiIoKAg9e/ZElSpV6Hn8DieFQgF3d3eN5zIYDAYj82CiLoPBSDfaBm2qExheTCOEYPTo0aKyvIDDl50yZQrkcjkGDRqUUbf9V7B+/Xq1xDM8qnbnbfj27Vv0798flStXFm2V42MUb9q0Se0cqRATEwN7e3sQQmgGbL6dXrlyRaOgy8eN47dq88THx4v+r8+ekIC4rezatQsDBw5E/vz5YWNjg6JFi2L69Ok4efKk6Bxdwq6+20sXqp7hfHxX4Kewe/PmTdjZ2VG7FStWDIMHD0ZkZCQ9nxdzDh8+DJlMBjMzMwQFBWViTbIfw4cPp16ht2/f1ijsCkMxlCpVCmPGjBHFcI6Li4O3tze1/YIFC7KkLplFXFwcatasSXd58PGDeUHXwMAAhw8f1np+nTp1IJfLaYxSvs/k7c3HL5da4inVd7S2dzZPUlISDekjDL0gFIT5GO78jgb+mqqLYvoOv5uLkNTkpsJxTq1atXDlyhWN56kKu3Xq1KFhbPQ5braw3vx7mV+M4cVYQki6dtLx/yYmJuLFixdYuHAhKlasSB03CCHInz8/Xr16lQk1YzAYDIY2mKjLYDDShXBS8uXLFzx9+lRNVOAnI0+fPkXfvn3poG/o0KF4+/at2mTEz8+PltmxY0fGVyIbolQq8fnzZzg4OIAQgn///Tdd5/G2jomJQUREBHbt2gVPT09s3boV169fF22f1fcJtWq7SklJwY8fP1C7dm0QQrB//356TJugK/SAcnZ2luwig7CtTJ48WTSB/ueff+jvRYoUwezZs0XnpiXsSs2TR2hLT09PmjV8woQJamWTkpJw7NgxnDlzBo8fP6afCwVKAJg5cybkcjm6d++O+Ph4ydlUyP79+2lysyZNmoiSp2kTdgkhKFCgAHr27Im+ffuK2urUqVPptfV5IeLly5eoX78+CEmNJc6/ewghOH78OADtC7h9+vShfYHQYxoAfHx8QEhqPH1hKCV9b6PC+p0+fRpTp05Fw4YNMWHCBFG4HlUWLlxIPSh5j0meR48eoVChQrC0tERgYCD9Hn23pSpXrlyBhYUFCCEYNWoU9u7dC3d3d/To0YO22V69etFQNKoI7XXw4EGULFkS9vb2eiuM8+M+1TFfQEAArK2tYWxsDEII9VZOTz+n2uZevHiBQ4cOoW7durC2toaRkRG9nr6PNRkMBiO7wkRdBoOhEeGgVzhQW7RoEY2faW5ujmbNmmHLli1qGewvXrxItxcSQtCoUSOMGzcOly5dwtatW+Hq6qoxRIAUuXr1KgghMDIy0up1ogldEzxt2+n0DWHb5D1ygdRM7I0aNQIhBIsWLQKQamdNgq6wrV+4cIFOIqUWDkTYVqZMmUKfz3///RdnzpxBSEgINm/ejJYtW8LIyAiGhobo2bOn6FxVYVehUNAYu1JC2C5nzZpFbdG4cWPMmzdPa1khqsIDL5oRQrB9+/Y/f9N/IYcPH06XsCsMxcDHh7SyskLp0qXRtm1bUXxnKQgTHz9+pMIu/8PHJwW0x2kODAxE1apVQQhBrly5sHnzZnh4eIhiwS9dujRT65Jd2LVrl5onKSEEDg4OePHihVr5EydO0OR8DRo0wPLlyxEQEABPT08UK1aMhg7S5wUGVVTHLfPnz9cYS/jz589wc3OjNu7bt2+6hN2LFy/S51vfnvOePXuiZcuWCAsLAyCud8+ePek7iBCC8uXL0+Rp6UW1HX78+BFOTk4ghKBZs2b/ewUYDAaD8dswUZfBYIhYvHgx3X6enJwsGhjyWyv5gSG/BatQoUIYOHAg3r9/L7rWzZs3RfG7+Mm0cBudMOaevg2ygdRJBB/HURt79+4FIQTVq1enn+kSY1UH19qShOg7muIROzo60s/mzp1LPcfWrl0Lc3NznYJuQkICJk6cCLlcLslYkDzbt2/XGgoEADZt2kTjvnbu3FntOC/sNm7cmF7n+fPnmXHr2QLh8yns/9zd3UULBbqeVWFfGB0djZ07d9LrTJ8+PV3X0BdUxW3VuKKHDh1Kl7ArTJ5WokQJ/Pvvv6K45YB+voO0we+mkclksLKywuHDh2kyOW3ExsZizZo1sLW1BSGEbmfnxwQuLi60rJTEyGPHjtHns2XLlujWrRvq16+PnDlzghCCOnXq4MqVK2rta+XKlTA0NKTjIRMTE2rT5s2bp5mTQJ8Q9mV3796FUqlEhw4dULhwYRpXXNV+wkSmuoRdVfvp23Pu6elJx9WtWrVSe475kCtz585F2bJl6bjov//++63v4+157do1Ohbw9/f/H2vBYDAYjN+FiboMBoMyZMgQ6lny9etXAD8HbytWrKCD5yVLlmDbtm3Yv38/KlSoAIVCAUNDQ3To0EHNuzEuLg7+/v5o3Lgx3U5oZGSE/v37i7zN9G2QDYCKWtu2bdMp7G7atAmEEOTMmfOXkvToin0oJfgJjUKhwJw5c/DhwwcAqYlmihUrBkNDQzpR7tevHz1PVRzas2cP3ZLMZ4SWEkqlEsnJyTSzNe9xJ4zzeO3aNert3L17d63X+vHjB44ePYqKFStSb16psWjRIo1ekIB62+NRFWmPHTuGkSNH0utMnjyZHtPHPlMVoT2EmetVhd5fEXZ5j92qVati/fr1tG+Wgj15Dh8+TNtU+fLlQQhB3rx5sWfPHsTFxek89/v37zh48CBatmwJS0tLyOVyNG7cWBQ6SEq2jIuLQ9u2bUEIwfz582mc4Q8fPmDv3r3InTs3CCGws7PDpUuX1GyzYcMGNGvWDCYmJjQcQ//+/Wkb19dQAdrYsmULXSBo2rQpWrdurbN8eoVdfebZs2d0kUZTeB8AVMA9cuQISpUqRYXde/fu/dZ3pqSkIDIykoa5kqqHPoPBYGQHmKjLYDAAABERERg2bBjy5s0LQghatGiBqKgoAD8ztMtkMhw8eFB03qtXrzBgwABYWlpCJpOhffv2VNgVTqZjYmLw9etXhISEUNGNRx8ngF++fEGlSpXoZEM1cYyQo0ePghACa2trulU9LZucOXMGFhYWatsSpYAw2V5iYiIcHBwgl8vVhDPgZzIluVwOGxsbPHjwAIC6qObr6ysKNyBVnj17BrlcDplMRkOBpDfBnDCOM5Aq7Arjburjc66NmzdvokSJEiCEYMuWLQA0e9V+/PgRd+/eRWRkJH78+AEg1U7h4eHU+1wulyNv3rxYtmwZPU9KtgR+7hJxcHCgn/2usCuMsWtrawtPT0/ExsbSclLB1dUVp0+fxpcvX2i857x588LLy0ursKtqn+fPn+PFixd0ERiQXtt8//49zMzM4OzsrPH4uXPnkCdPHp3C7ocPH3D37l2cPXsWL168kGxStI8fP6JOnTogJDX2tZmZGZo3bw5A+0IYIG1hl28rz58/h5eXF/18w4YN+PTpk1r5hIQEHD16FKVLl9Yq7Ar7S+GzrYkuXbpQuzMYDAYja2CiLoPBoLx58wZTp06lE5AWLVrg27dv+Pjxo8gDgB/s8ROTkJAQDB06lAq7Tk5OVNgVCnCa0MdJ9K1btwCkTvaqVasm8lTkhRsh0dHRqFChAgghqFy5sij8hSZSUlLg4uIiSQFSuI3y+fPnSEhIgFwuR5cuXUT2Era75s2bgxCCHDlywN7eHhs3bsS7d++QmJiIEydOYObMmXRCKNXtwzwPHz6EkZERKleuLPpcm6ArbM/r16/HkydPNF5Xarbctm0bFQ1V+8KYmBg8efIEvXr1oh5TVatWxciRI/H9+3cAqQL5mjVrULp0aQwZMoQmsBJeRypERUVh6tSpNHM7E3b/NzSJY8HBwekSdoWxszWh77bTxOPHj2FgYECTRWmywfnz53UKu5rOkVqfyXP27Fk4ODjQ8F7ly5dHfHw8AN19n1DY7d+//y/tevrbUW0//O6Obt26aQxdwe+kEQq7wlAM/PWOHj2KvHnz4syZM6Lr820zLi6O9htLlizJiKoxGAwGIx0wUZfBYIh48+YNpkyZQicgLVu2xMWLF5E7d26RFwAPP/jjhV0rKys1YVdKkxM+OzgfX0zo5TB69GisXbtWFO8sKSkJKSkpWLp0Kd2m2aVLFyrsJiUlqQ3Y9+/fD0II8ufPj4sXL2Z8pbIh/FbDDRs2oGjRohonFEJht0OHDqLYzvnz54eNjQ2NKUkIwYwZM9TOlRq3bt2ioUB4753Lly+nmWBuw4YNIIRg7NixOj2qpMK0adPUBEggtX+dNm0aKlasKIpJSgiBmZkZxowZI/J8fvv2rSh0i5T6UiEhISFYtGhRhgq7GzduTDOm7N+GrvYitAmQuutGl7DLlz979iw2bNig5pmv7wjfw3Fxcfj8+TM+f/6MsLAw5M6dG/v27dN5flrCrtQR2vf8+fNo3rw5jI2NQQjB8OHD6TFdNnN3d6f96fz58zP0frMrERERaN++PczNzWFkZPRLwu7t27fpc37y5Eka63n27Nkav6tp06YghKB06dJq8ckZDAaDkXkwUZfBYKihKuzy4tfp06c1ltcl7IaEhACQhhgxYMAAEJKaDE413MKyZctACIGVlRW2b9+uJh48e/YMbdu2haGhIWQyGRwdHdW2zn39+hVeXl500iLVGGZXr15FoUKFQAihbXTmzJkA1D1WhILP/Pnz0apVK5G4y8eG3blzJy0n1Ym2UqnE27dvUbBgQSgUCpw8eRKPHz9OU9ANDQ2lcXiFcbKlDP+8E0Jw/Phx3L9/HydOnEC5cuVACIG5uTnq1KkDHx8fbN68mU6sK1eurBaXnJFKSEgIFi5c+MvCbvPmzUXCLgCNwm6hQoWwdevWzKlMJiDsxwIDA+Hr64uVK1fixo0bVORRfS+rCrt79uwRvatOnz5N23VgYGDmVCQbIHyv+Pv7o2PHjihYsCBKlCiBli1bwsLCAitWrACg+/0hFHZr1aqFy5cvS/Z9owmhnc+dO4cWLVrA0NAQpqamImFRl80WLlyIqlWrSnpxMTg4GAMGDICFhQUUCkW6hd2SJUvCxcUFU6ZM0bh7SciXL19o3xkUFJQp9WIwGAyGZpioy2AwNMILu7ly5aJJqNzd3QFojvOmSdg1MDCAk5MTXr9+nZm3niVMnz6dbvHX5D379u1bNGnShAq727ZtUxN2b9++jUaNGiFHjhwghKBIkSIYOXIk1q5di9mzZ6NTp050oD1p0iR6nhQEcyHx8fHYsmULqlatSu3Ro0cP2gZVhV3hJCYpKQmXL1/G0aNHceLECTx69EhkP6nZUhO8t7mhoSFti8IQIqrPP++lW6tWLTx//jyzbzdbEh4eDkdHRxoTN3fu3NQr197eHps3b6aTbAA4deoUFAoFZDIZrl27loV3nr35VWHX3NyciuVv374VHef7iWvXriFHjhyQy+V6E4tT2OfNmDGDii98rNJ69erh/v37ANT7S1Vh193dHZcuXYK3tze9htBzUkoIF1X5Z5v/vWTJkulaxD5//jz++ecfEEJQokSJ305Upa+oeuw2a9YMCoUCOXPmFOUQ0CXsSjUmsZDg4GD069cvTWE3MTERZ86coSHAhD9Tp06l5TTZ8tOnT2r9KoPBYDAyHybqMhgMrbx58waTJ0+mniVlypRBZGQkAM0DaqGwO3z4cFhaWtIt8vrM06dPUaFCBRgZGcHb21t07NWrV/T39+/f0+1q2oTd+/fvY/DgwShSpIjaAFuhUCBXrlyYN28eLS81Lx++jSUkJKgJu76+vmrltP1f0zEpxoMUwgsRN2/eRLVq1ahdhdnHVb2f/P39abl169Zl6v1mFzS1m+TkZJw/fx6tW7em9ilWrBiGDh2Kz58/0+eWnygfOnQIhBAYGRlJ0uvpV8SXXxV2+diSmuD/djdu3MCzZ89+487/j73zjooi6dp41QxBQEExYUQx4CqY05pzzuuaMK05iyAquuaMWQwYEUVBQcxhzQFdDIs5oKioCCYUBFQQ5vn+8OuyexLoK8Hp+p3jcaaruqfrUtXd9fSte7Mf4v44YcIEJj4WKFAA+fPnh5GRESilsLS01IiVKfDkyRPUq1eP1bO0tGQCpqurK6snp/vP6dOnYWpqCkopRo4ciSVLlmD9+vWws7NjL786duzIVtjoE3ZPnz7NXtzKyYbpRdyHT58+/T8Ju3ImvcIu8PX5tHv37qhduzb+/PNPbNiwgZXxPsrhcDjZGy7qcjgcvQgeuzY2NixG4fv37wGkLez26NFD4lFqqISEhDBvvBMnTrDtQjiGCxcusG2RkZFpeuy+evUK58+fR5cuXVCvXj2UKlUK9vb2mDNnjqwTJgmoC7s1atRgMUnF9ueTuh8jISEB8+bNQ+HChVmIi1OnTuHFixeszsOHD7F27VomWLq7u7MyQ7f793hzJycnY//+/Th58iRu3rzJtguxXQVbTZ8+nU26hZi6ckHcXzZs2MBeHOpDEHaFF4ctWrRgZerCrtju2v52htpffXx82PjcunUrbt26hadPn2LBggWoVasWCwNy6NAhrfvHx8ejU6dOLNZ7hQoVMG/ePFZu6Pcf9Zd9rq6uoJRixowZknp3796Fk5MTrKysWNLO9Ai7oaGhrK8aui1/hPQKu3JcXZNWm8X3lvQIu8LxUlJSkJiYyBLTietwOBwOJ/vCRV0OR8bom8yKH+QEYVdYMtiiRYt0CbtCHV31DIXz58+zyfPy5csBfE2KJmw7efKkpH56hF0xCQkJLDO7gBwnMmLUhd1q1aqBUgobGxsu7P4PCPZ6+/YtJk6cyOJpK5VKNGrUCP3794eTkxMqVqzI+veECRPY/oY8zgHNOKWbNm1C37598ffff2Pfvn0ST2ZdtlAXHQMDA5ktvb29M+S8fwVGjBgBSim6d+8uuXfo4unTp3BxcWGxc5s1a8bKtHn+yqlvAkCfPn1AKWWrR4R7RmJiIs6fP4+GDRvqFHbFx7p06RKCg4Nx//59nb9laIjvGxEREfj48SOqV6+O2rVrs76pUqmYTZ88eYKBAwd+t7ALGL4t/xf0CbviGLtyeh4S95ejR4/C09MTU6dOxbJly/D+/XskJSUB+GqT9Ai76gkTxfDnJw6Hw/k14KIuhyNTxA+Gr1+/RkhICHbv3o0TJ05IPPIE1JOnpSXsijHEB0M/Pz/Jcl2xiFu/fn32+ciRIwA0bfD8+XO9wq6cJik/irqwK4QMKFiwIBd2/wcEe7179w5eXl5M/FEoFKxfKxQKVKtWDcuWLWP7Gbo4IW7fnDlzUKJECY0QKf3795cIZOo2EX+Pj4+XeFNOmTKFlcmtz378+BFz5syBsbExKKXo1q0b3r17l+Z+Fy9eRMGCBZkNxaEY5HQNFbf18uXLiI6ORokSJdC2bVskJiZq9KfU1FRcvnwZjRo1YqscDh48KKmjazzLya5LliyBjY0Njhw5Ant7e/z5558adQTbPnnyBAMGDPghYZejG23CromJCaytrTFu3LgsPLPMR9yPJk2axGKGC/9q164NT09PiWD7PcIuh8PhcH5NuKjL4cgQ8WRt2bJlaNiwoUSwyZ8/P2bPno1Lly5J9vtfhF1DomfPniyJxMePH5GamorXr19jyJAhLPatuqCrTaT5Xo9djiZc2M0YBHulpKQgPj4eS5YsgaurK9q2bYvevXtj586duH37Nqtv6ONfPOl1dnZmwnarVq0wfvx4TJ06lcV4rV27NjZv3qx1X4F9+/Yxz1RKKSZOnMjKDN2WuoiNjcWKFSu+W9h1cnKCqakps3/16tUz4WyzJ126dIGJiQkCAwNRvHhxjB49Wmfd1NRUXLp0Sa+wKzeE615qaipiYmJYCJqSJUsiZ86ccHFxYeXa9uPCbsagLuy2bNkSlFI0b95clnadNGkSu3c4OjqiatWqLK5zsWLF4OLigqioKAD6hd1evXrh1atXAPgzEofD4fzKcFGXw5EZ4gdgFxcXtrS6TJkyqFu3LipXrgxKKXLkyIH69etj//79kv3Vhd2WLVsiNjYWgDwyDQvCrUKhwLlz5yRlTk5OEo/G9evXp3k8Luz+7+gTdtVDX3B+PoY+qRZPdqdNmyaJUype1dC1a1fJRHvjxo2sTLBRdHQ03N3dWb1ChQph8eLFrJ4cBF31+4TYvrGxsVi+fPl3CbudOnVC2bJlsWzZMraPHHn16hVsbW3Zi1lKKSZPngxAt2CjTdjVFWPX0BHbSBBi//vvP5QvX56NVwcHBzx69Ejv/uJQDEZGRujevTsiIyMzvgEGjvjvc/ToUYwZM4ZdS+QkSIqTk/r5+eHly5f48OEDrly5wp59rK2tMWLECHZ/0ibs5smTB0qlEi1btkR8fHxWNonD4XA4/yNc1OVwZMr06dMlcRwfP36M5ORkJCYmYtGiRShWrBiMjY2RN2/edHnspsej6lfHw8MDlFKYm5vj7NmzkrLNmzczezZv3px9Fi9P14VY2M2XLx+8vb35Q/Z3ok/YFSeX4/zvyGkCLSYoKAhmZmaglCIgIEBS9vfff7MxL8Qed3R0lGQQB4BPnz5h4cKFcHR0xLBhw3D06FFWJgdBV8zy5cvx7NkzAD8m7KpUKsTExKBWrVpo0KABHj58KBEkDf1lgzbCwsJQvXp11hdr1aqlU4QU0CbsBgYGZtIZZw/E/c/b2xsWFhY4duwYAOD69esoW7YsE8vXr1+Pjx8/6j2OIOxaW1trhFbh/Dja7j2G7kygfl+YMGECKKXw9fXVqPvo0SO0a9cuXcJuv379QCnV683P4XA4nF8DLupyODJk//79LBbX7t27AUiTfpw/f54ln+nRo4fWYzx9+hTu7u5M2F21alWmnX9W0alTJxgbG7NkaAJbt27FpEmT0LVrVxw8eBAxMTHsgfl7hF2xGBwSEpJBrTBcxMLu5s2bUaVKFVBK4e7unsVnxvnV+fTpE3r37g2lUomlS5dKBEOxoHvgwAHs27cPuXPnBqUUVapU0fDYT0xMxOPHj2UdQ1sIYdGsWTMmOqQl7L569UqSpR0Atm3bBkopxo8fLzm+3ARyMWFhYWzFjbW1Nby8vDQSbaojxNgV4mcLYQbkxr59+9hYHjlyJAsvdePGDZQrVw6UUpQqVQoHDhxgCanUEfpxREQEunTpgubNmxu88MjJGMT3BW9vb0RHR6Nbt24oXbo0Xr16JblmCnUjIiLSJeyGhYVh27ZtWn+Lw+FwOL8WXNTlcGTI1KlToVQqMXbsWKSkpEClUrFJ8Llz55AzZ05QSuHk5MT20fbA9/TpU4wYMQKTJk3KtHPPKl6/fg1LS0sWS1dg6NChoJSid+/ezCMqNTUVDx8+RP/+/b9L2H3+/DkqV64s2+XDPwOxsOvp6YkFCxZk8RlxDIE7d+4gf/78qFevHp4+fcq2z5s3j43xHTt2sO2LFi1i2ytWrKjhsSs31O8f69evZ16MjRo1Spew2759e+zduxexsbF4/vw5duzYwWwsvJyUO2LBplq1aqCUokiRIti1axc+ffqkd9/U1FQEBwdrvLSUC9HR0ahTpw4opZgzZw4+fPggKb9x4wZ+++03UEpRunTpdAm70dHRrO9zYZfzo4wdOxaUUvTs2RNVqlRB+/bttdb7XmFXQM4vwTgcDscQ4KIuhyMjVCoV4uPjWdb2rVu3Avj2IBgcHMwE3d69e7P9Pn/+DAD48OEDkpOTJccUL4s19AfDAQMGQKlUokqVKjh69CjzNqOU4vjx4wCkosSjR4/w119/sTpLly5N8zeE+MSA4dszoxAn+RLgtuT8L0RERGDAgAHw8fFh2/z8/Fj87E2bNgH41s8+ffqEevXq6YyxKyfEYy80NBQHDhzA3Llz0bZtWyiVSlBK0bhxY53C7urVq5mwW7BgQZQpU4aJa3Jb2p4ebzrB3uJQDEWLFkVAQECawq4YQxch1W354MEDUEoxYMAAnft8j7Cr77c4nPTy8uVLtGnTBubm5rCyskLOnDnRtGlTpKamau17YmG3ffv2TNgdNWqU1mssh8PhcH59uKjL4Rgw2oSsuLg4Fi83ODiYbdcl6IpF3GHDhsHb21vrA6EcHhJ9fX1RokQJKBQK2NjYMFFBiL2nzQY/IuwCfBLIST+6MrFzfi4xMTHsc2JiInr06AFKKVxdXdmLL+Cb/Tt06MDEHyHW7sWLFzP9vLMS8T1o5syZKFiwIBPC8+bNyxJ1UkrRtGlTraJDamoqDhw4gEKFCrEM7wqFAvny5cPff/+t9bcMEXH7QkJCsG3bNowaNQqjRo3Cnj17cO3aNY26/6uwKwe2bNmCyZMnY//+/TAyMoKPjw9UKpXO6+iPCrsczo9y//599OnTh4VNK1CgAJ4/fw5A+7OiurBrbGyMPHnywMnJCXFxcZl67hwOh8PJeLioy+EYKOIJ4OHDh/H69Wv2vWbNmjA1NWWJFs6cOaNV0BV76hw7dowlCnn79m0mtCD7IJ7cbd68mQkL6l5iukSFHxV2DRV1DzAuYP844j734MED9pkLuxnL/fv3YWRkxOLoamPAgAEoU6YMli9fjly5cmHkyJGZfJbZBzc3NybGzpkzB0ePHsW1a9ewatUqNG/enN1/dMXYBb5eR3fv3o3x48dj8+bNOHHiBCuTk6A7Z84c2NraMnGcUoocOXKgZMmSktAJ4lAMXNjVzuHDh0EphaWlJUsUl5549lzY/UZa9xp+L0o/6tcx8fd79+7BycmJha1p06YNWymXlrArhGJwc3PLwLPncDgcTlbBRV0OxwARP0SPHj0alFLMnDmTeZoJS7IaNGiAkydPsrf/ugTdxMREjBo1CiYmJpg5c2bmNSQbIsQ2EwSKunXrSjKF65rAqAu7co1bKJ6kjBkzRiLMcH6cYcOGoWHDhjh9+jTbxifTGUdoaChMTExgZ2fHPJ/EqxrevXuHatWqwcbGBl++fJF4UcrtJYa3tze77gUFBWmUh4WFYenSpbCystIQdgX09WVDt6e4fS4uLuze0759e7i6umLAgAGoUaMGs/GECRM0wiSpC7uBgYFc2MXXl9X16tVDjhw5YG5uDhMTE2zZsgVA2uEnxMKuvb09AgICDD5khTrivvngwQOcPn0afn5+OHbsmORer2+MqpcZ+njWhbjdu3btQnR0NADtwq6lpSUUCgX69u2bLmE3PDwcXl5ebDt/NuBwOBzDgou6HI4Bs2LFCkmiLsHD9vTp0yx8gImJCSil+Ouvv9h+6h4nW7duBaUUxYsXx7lz5zK1DdkJwVuZUooRI0agUKFCUCgUqFWrliRRT3qF3dmzZ2fWqWc7Jk+eDEopjI2N8eTJk6w+nV8OcR87cuQI61OdO3dOt7CrzyuIo59bt24xmy9cuFCj3NfXF0qlkiU91BbnWS4IySR79OihM851bGwsvLy8WDLKJk2aaAi7AnIVJObPn8/6XEBAABITE1nZ8+fP4eTkxMoFYVKMWNgtUqQItm7dKjsRUhunT59Gs2bN2LNQq1atWFlaAuONGzfg4OAASqnsEpyKx6G/vz/KlCnDYl9TStG1a1ds3rxZ77VPfAw/Pz/28kuuwi7w9QUtpRRjx47Fq1evAIAlNAa+rhJxcnJCzpw5YWxsjD59+qRL2BWQ4z2Iw+FwDB0u6nI4BoTw8KZSqfDhwweWyXn//v2SetHR0fjrr79gZmbGlg8KD4zqk7ygoCD2kL5o0aLMaUg2ZuHChTh06BAAwNPTEzY2Nt8t7Pbv3x+UUgwaNChTzjm7IWStNzExwerVq/Hs2bOsPqVfCm2TMjc3N5ibm6db2BWPc29vb7x//x6AvCfT34sgVubNmxcLFizA58+fcevWLWzcuJFdM729vbP6NLMMlUqF9+/fo2zZsqCUSuLfauPVq1dwc3ODqakpKKVo1KiRTmFXbly7dg1ly5aFQqHAjh07AHy1r3AtCA4OZmGBunbtqvM4Dx48QLVq1WSXYE4b4uviyZMn0aJFC+TIkQOUUri4uLCytESwq1evomfPnhre0XJBuJ9TSpEnTx4UK1aMfbe1tcW0adPYfUWXLVetWsXq379/PzNPP1vx+vVr5nVfsGBBncJuWFjYdwm7HA6HwzFsuKjL4RgI6l5P4eHhoJRi+PDhADSFnUuXLqFu3brMs6Jp06YIDg7G48ePAXyNszt79mz2cC6OxSW3h0aVSqXTo2nVqlXfLeyGhYVh27ZtadYzFNQncgMHDoRSqWTiRHpQt79cPczEtvT29kavXr1gb28vWX5NKcUff/yRLo/dnj17Mk99secfJ22OHDmCOnXqsNimFSpUQL58+djfYNKkSayuoY9xXaSmprK+OWTIEAD6x+6ZM2eQJ08eZkN9HrtyQlgt06ZNG8TExEgE3fPnz6cZEx/4dt++e/euVu9yuaFSqSTPMidPnkTz5s1hbGwMS0tLzJgxg5Wl17tRbsJuSEgIi/E6ZcoUXLlyBS9evIC3tzd+++03GBkZIVeuXHBzc9Mq7KpUKsTGxqJkyZKglMLCwoKtYJLbc6bAw4cP0aZNG1BKkS9fPi7scjgcDidNuKjL4RgYXbp0QbVq1XDq1CmYmJhg5cqVOuueP38ezZs3R+7cuZlnQL58+VCjRg3JMrrJkyezfeSwdCs9Aox48vYjwq6AoYuT4snF7t27kZKSgipVqsDR0ZFNQNJC3Oc2b96sdbscENty/PjxoJTCyMgINWvWxKBBg9CkSRNUqlSJjdsuXbroFXZDQ0NZ3bJly+Ly5cta63F0s2fPHvz5558SQb1AgQISr1S59VOB1NRUJCQkoEmTJt+1rL1Lly4wMjJinqfaYuzKBaHv9OjRg8XLBb7ZLzg4WKug+/nzZwBfvZ+vX7+u8/iGfv9Rv5Zpu7aJ7+WnTp1C06ZNYWRkBCsrK0yfPp2VyXUcixGvBgOA5cuXg1IKd3d3jbrnzp1DmzZtYGJigpw5c+oUdoGvAmW5cuXYiwu5Itj14cOHaNmy5XcLu/369WPPVfw+zuFwOPKBi7ocjgFx8eJFJiyUKlWKxd4DpJNo8cPezZs3MWfOHJQuXVoiTCgUCnTq1EmyfFgOkxpxG1+/fo1z587B29sb+/btw9WrVyV1xbGH/xdhVw6MGDEClFIMHjwYVatWRb9+/b77GAMHDtSI/yxHpk+fLomtmZCQAOBrf3z27BmzdXpCMezZs4fVXbx4cWY245dGbMc3b97gyJEjWLRoEbZu3YqLFy+yMjlcM9PCx8dHa/xhXcJuly5dYGdnhy1btjCvXbkKu0I/6969OyilWLBgASvTJeiKRcpJkybh999/x7///pt5J51NEPevK1euYNOmTWjevDlatmyJgQMHYv78+YiNjdXYT5+wK2cPSPE1LyQkBADg5OQEa2trtsJL3fv54sWLaQq7wvcLFy4gV65csLa2RlhYWKa0KTvyo8KulZUVjIyM0L59e3z8+DHLzp/D4XA4mQ8XdTkcAyI+Ph7e3t5sORylFL169WLZ2XWRmpqKd+/e4eDBg9iwYQMCAwNx5coVyYRHDuKEuI1Lly5Fw4YNJUI3pRQDBw6UhA0QPKIA/cKunCeDT548QevWrWFkZMTiZTZu3BifPn1Kt+B99uxZ5MqVC0qlEkZGRjh8+HAGn3X25O7duyhTpgwUCgU2bNigs97MmTP1hmIQ233evHmsHiDvvvo9pNV35WxHcR+7ffs2u5aWKlUKvr6+rJ74mpuamor4+Hg0aNAAhQsXRmRkJNavX89WkshV2AW+JZZs2bIlUlJScPHixTRDLoSGhqJIkSIwMzPDzZs3s+K0swzx2Ny1axdsbW2Z57f4X4UKFeDn54fXr19L9uceu7rZtGkTKKUYM2YMnJyc0LhxY406YvunR9hVqVSIj4+Hs7MzKKXYtWtX5jQmC0hPgtIfFXaFvwuHw+Fw5AUXdTkcAyMhIQGbNm2ClZUVKKX47bffcP78eb376BIfhAdGOXiaim3g4uICSimUSiVy5MiBkiVLIm/evGwiWLx4cUydOpXV1+WxW6dOHYmwK2dCQkLg5OQEIyMjUEpRsWJFREVFAUj/JHn9+vXs77B27dqMPN1sy8GDB0EphaWlJUJDQzXKxbacNGlSukIxXL58GZUrV4apqalsRbOfgRyuk2LUx21MTAx7EahetnbtWuTKlQsKhQKVKlXSeCEhXH/9/f1BKUXPnj0BAB8+fMDmzZsNXtjV1ndSU1PZdl9fX1BKUaxYMcybNy9dMXSnT58OpVKJgQMHyi7Wq4BgNyE+c48ePTB27FhUqlSJxb8uUaIEZs2ahefPn0v2FQu7efLkwcyZM7OoFdmH169fo1OnTqCUwtTUFGZmZqhevTqSk5M1niP1CbsTJkxg9cX77dmzB8WLF8fdu3czp0GZjLit27ZtYw4X2p7BxcJuq1atWIi0MWPG4OXLlwCkwu6dO3ewZcsWjf05HA6HY/hwUZfDMUASEhIkE+GGDRvi2bNnWX1avwTipe3r1q3D5cuXkZiYiEuXLmHy5MkwNzdniZHGjx/P9lOPsVukSBHmmaYvpqGho75ks1evXixec58+fViZPmFXPOFxd3cHpRR16tRBYmKi7CYuwlJ2R0dHjfiGAmJbiuO9duzYUSLsiu06atQoVKhQQfZeaJz0Ie4n27Ztw7Bhw2BtbY0iRYqgdu3aGD58OO7duyfZZ8aMGVAqlVAoFMiRIwfGjh3LVoRcvXoV69atY31106ZNbD/1+1mNGjXYCyFDQGzLBw8esNjWwLexnZSUxBLOmZiYaFw/P336JDnmrl27QClFzpw5sXfv3gxuQdai66X0P//8w2w1a9YsvH//ntnzyZMnCAwMhJ2dHSilKFKkCBYsWKAR5/3UqVNo1qwZcuTIAUopNm7cmOHtye5cvHgRvXv3Zi9oy5UrJxEZxWgTdk1NTWFlZYWhQ4dqvX+nN9b+r8yYMWNAKcWgQYMQHx8PQL+wGxYWhsqVK7O+OmbMGK0euwL8Ps7hcDjygou6HI6BoL6kOiEhAd7e3iwmYdOmTREZGZmFZ5j9OXjwILNXYGAgAE3BbMeOHahevTqUSiUsLCywdOlSViZ+kF61ahUopRg1alTmnHw2Q2wL8eeQkBD07t2bTbZdXFy01lNHmPC8ffsWjRo1Qo4cOfDmzZsMOPPsze7du5nw9c8//+isJ9hrw4YNUCgUTEj/448/WDxEcT3xZz4h5OhDmze4UqkEpZStEBE+BwQEMNECABYuXAg7OztWv0CBAihevDisrKzYy7JJkyZp/GZCQgK2bNnCjh0REZEpbc1oxLZcv3496tevD0op5s+fr1EnODgYtra2oJQid+7cuHjxooZ3blJSEnbu3MnsNGvWrMxpSBawbt06BAcHa2xXqVRISkpiMdhHjBihUS7w4MEDlClThr2APXHiBADpS9rTp0+jcuXKqF+/vsEnltOHvhe04jj3aQm77du3Z8+k2u4/hk5UVBSaN28Oc3NzmJubp1vYDQkJYUJ6/vz54ezszIRdub3c5nA4HI4ULupyOL8Q6g98cXFxGvFyxQ/U6sJukyZNuLCrh/nz50OpVKJz584aXqBiuwYFBcHe3h6UUtStW1cSr1D8Nzp79qzW7YaIevv0fRdCMQgTQrHHc1qCYkpKCiZNmoRatWrJUny8fv06ChQoAFNTU8ycOVOrlw7wbZL39OlTtkRWEHqGDx8uuQ7IcWLN+THEfW3ChAmsT82fPx+HDx9GWFgY1q5dizZt2oBSCgsLC3h4eODDhw9sv6CgIIwcORKUUiZSUEphb28vESHVx3d8fDx8fX01PIB/VcTtE1aIGBsbo3bt2lqX+icmJmLDhg0oXrw4KKWwtbVF3759ERgYiJCQEGzevBlDhgxh9hRfVw1tXAsvTSmlGvFwASA6OhqFChUCpRRbtmzReOkNfLPJnTt3mFhes2ZNFidfXP+///5jfy8u7H5F/QWtq6srK9Mn7J45cwaurq7MjnIUJG/fvo2ePXvC3NwcJiYmaQq7ycnJSExMRLVq1WBlZQVzc3PkyZMH/fv3l7w043A4HI484aIuh/OLIH5I9vPzw9ixY1G8eHGUKlUK/fv3x6ZNm9hDstjLhAu76SM5ORm1a9fWm2hCPPlYvXo1m1R6eXlJ6qUnEYYhIW5fcHAw1q5di27dumH06NGYNm0aIiIiJKIOoOnp8z3Cbnx8vKy9Sjt37szi6p45cwaAbtHm5MmToJRi3759mDVrFuuz69evz8xT5hgYGzduZH1p3759GuVBQUEwNzeXxH1VF29u3LiBoKAgLF++HIcPH8bt27dZma5xbSgCkHi8CsmhKKVYtmyZxAtZvb3v3r2Dn58fe6ko/BPu7wqFAhYWFhJR2NCukevXr2ftXrJkidY6//77L0xMTJArVy5cvXpV57EE+3p6eiJXrlywsLDAsWPHNMoFDM2W+hD3UXF+hR99Qatt7MpZIL99+za6deuWbmEXAOrUqYOaNWuiRYsWoJRi4sSJmXnKHA6Hw8mmcFGXw/kFED8cT5kyBcbGxszDSXiYNjU1xZ9//sm8TLiw+30kJyezmIXDhg3TWU/8sN2hQweWkVyO8V0Bad+cMWMGChQooJFhvGzZshg3bhwePnwo2fdHhF2xjQ3N+yythIXCmL558yaqVq3KxJxLly5p1Bf2WbRokSRUw6BBg9h+YWFhGdWULCetvmFofScz+fjxI/78808olUomqonFnuDgYJbIy8nJSesx9F0r5fS3mTNnDrtOqifV1JXc7MuXL3jy5Am6d++OWrVqsTAWBQoUwPjx47Fnzx5W19BEyDNnzrDYyitWrJCUifvNnTt3YG1tDVNTU2zbtg2AfltcuXIFFhYWWo8rJ8TjMikpCe/fv0dkZCSePn0qqScWY/+XF7RyQ/26d/v2bXTv3j1NYTc1NRVPnz6FjY0Nxo0bh7t372LVqlU6j8vhcDgcecFFXQ4nmyN+sBs3bhybALq4uMDPzw+XLl3CzJkz2ST6999/T7ewq/6gLndGjBjBlmA+ePBAZz1hojJ48GAWgkFOQoSAuM2urq6sb/bt2xczZszA0qVLUaVKFRgZGcHCwgJt27bFtWvXJMdQnxBOmDCBlclpoiKe/N64cQN79+6Fv78/rl69KhnHKpUKiYmJ8PLyQtmyZVl8zZ07d0qSIaamprL4u4UKFWLJ+i5evIhChQrBzMwMhw4dyrwGZiJiW167dg07d+7EzJkzMX36dOzbty9dL7S0iRFy6o/6uHHjBnLkyAErKyuW1EuboCt46AJfBSLx/9q8AOXGhQsXWCgFb29vANptERMTgzt37uDDhw8Su6WkpODDhw+4cuUKHj9+rJEM1RDvSStXroRCoUCrVq0k7Ttw4AB27drFEsa9fPkSNjY2oJSiS5curJ66TcT2btKkCfOWliNi25w4cQIDBw5E8eLFkSdPHlhZWcHV1RWnTp1idcT3JS7sSlFvs3q/E5eLPXZNTU0xaNAgFlZN3D83b94MSikWLFig97c4HA6HIz+4qMvh/CIsXLiQiWY7d+5EQkICKxOWbwreu3Xq1NEp7G7ZsoV5uqxcuTLT25GdWbJkCcsuLmRf1yc4TJ48mYnAco5rtnjxYtY3g4KCNDzMevTowcqFZcHqSzh79erFMowPGTIkU88/qxFPyqZOncriOwr/Bg0ahIMHD0r2iYmJwZIlS1ChQgWW5b5Jkyb4+++/MXXqVAwYMIDtP3fuXLZfQkICy/i+aNGiTGtjZiG25dy5c1GyZEmJLU1MTFC0aFHs27dPZ5Z19YSH4tjYnK8hPZRKJapXr87uM0Dagm5qairmz5+P8PDwTD/n7IiXlxcopahRowaioqIAfOt7iYmJePjwIfr37w8HBwd2X580aZLeWKSGLpALLw9r1KiBx48fAwBLoGdra4sHDx4wGyxYsABmZmYaiee0id0REREoVqwYKKXYuHFj5jQmGyHuN9u3b2ehUwS7Cp8dHR0lomJ6hV1DfMGgC/H9Y+vWrXB2dkbXrl0xbtw4XLhwAbGxsQCk3s5iYVepVKJ9+/Z48eIFkpKSEBcXx5IfGhkZ6U2QyuFwOBx5wkVdDucX4OLFi+zBWlhKKDBlyhT2wN2nTx+WHESfx+7q1avh5uaWqW34FUhNTUXz5s1BKUWOHDlw+vRpjXKB5ORkdO3a1eAzjKfF3bt3UbFiRZaQBvhqJ2GSGBoayoSebt266TzOpUuX0KtXL9mJuuLJ9Pjx4yVxMQXxValUwtHREZs3b5bsGxsbi8DAQNSrV08j5IXwgkfs+QwAr169QuHChQ3ypY4uz/GmTZtizJgx6NKlCwtbYW1tjfnz5+PJkyc6jyfELu7YsaNBh6r4Xvbv3w9KKYoXL44XL14AAM6fP69V0BULF4KI2a9fP3z58sXgBci0GDNmDOtfgDS54bRp0+Do6CgJsSR45U+ZMkW2thPi6ebJkwfr1q3DsmXLmG1mzJghqXvu3DlUrlwZlFKUKVNGslxd6JfCNePYsWOwsrKCvb29JLaz3Ni+fbvkZWJgYCA+ffqEkJAQdp+3sbHB33//zfbRJuwKydMGDx6cFc3IMnTdg4R/ZcqUQd++fdl1U13Y7du3L6ytrdn1tUGDBpL7+9SpUzO9TRwOh8PJ/nBRl8P5BZg6dSqUSiVmzJiBjx8/su3Tpk2TxONLTEzE5MmTmSdurVq1tAq7gucUIO9EFWKESfL+/ftRpUoVJuwePHhQ4o0mEBAQAEopcuXKpeFFKSf27NnDvJUFb7O0lmILfVHde+f8+fNMGAYM3+tMjLe3NxvL3t7e+O+///D69WtMmzaNeZAVKVJEIykf8DXG6fTp09GrVy+ULl0adnZ2GDZsGPM2B76N+aNHj8La2holS5bEnTt3Mq19mcm8efOYLQMDA1mSPsEGDRo0YOW7du3SeoyXL18yu+fNm5eNcTn1SV1ERkaiRIkSUCqV2LZtG06dOpWmoBsVFcVE8h07dmTFaWc7pk6dCkopLCws8O+//+L+/fs4ceIEE3MtLCxQo0YNbNu2DUuXLmX98ffff8erV6+y+vSzhOTkZLRq1Yrde4VxvHjxYlZHfF/ZsmUL65u2trZwd3eXHO/Lly+4efMm8+gfNmyYrLxKxZw4cYLFFZ41axaSkpKYLQ4fPsxsrVAoYGlpqVPYvXTpEvr06QNKKapVqyZLe86dO5fZq23btujXrx8KFCjAxO769euzcCni6+TDhw8xa9YslC5dWiIG58iRQ9J35WhTDofD4eiGi7ocTjbn8+fPaN68OczMzHDlyhW2XQgVQCmFr68v2x4aGory5cuzMrGwKxZzOdpJSEjAqlWr2JJXU1NTuLi4YOfOnXj//j3OnDkjsf306dOz+pSzlL///huUUgwfPhzAN9FLl6Ar9MWEhAS93o+GHidOaJ9gr169ekGpVGLnzp0adXfs2IHq1auDUorChQtLhF31UBexsbEsHp+AMGmMj49Hs2bNQClF+/bt8f79+5/ZpGxBaGgo83D28/MD8HUCLEyCxZ7jgoekLsLCwtgLnl69ekk80OVMbGws2rVrx5bBC0u1+/Tpw+qovyxcs2YNCyGgnjBRrjx//px54VlYWMDGxoaJPr///ju8vLzw+vVrVl9Ygm1qaqoRm1wOiK91v/32G/Ngbt26NXtxI4xP8ThdvXo1rK2toVAoQClFw4YNMWzYMCxatAj9+vVjKxdatGih4cErF96+fYtu3bqBUopx48ZJ7Ce8wBbu5S1atIBSqUTevHkxefJkVk/89zl37hymT5+uN1SIoXL//n3Y2tpCqVRi79697F7/4MEDjBkzhvW3WrVqaRV2ExIS8OjRI0yePBnDhw+Hh4cH9u3bx8oN/dmIw+FwON8PF3U5nGyE+kRY+H7nzh0mUABflwoWKFAAlFJ4enoCkD40L1iwgL3dFyaIQgIRTtrExcVhy5YtqFOnjmQpu3p8Tjl5TuialAnxnHv06JGmoCue9I0aNQoFChTArVu3MvbEsyHivnLhwgUAQJEiRdC0aVMkJiayMvHkbdeuXTqFXV3e9sLfIyUlBZGRkWjbti0opShRooTBxjX18fEBpRRt2rTBu3fvJIKurn4ptrN6P9+6dSvy5MmDOnXqGPwY/x5OnDghuRa2adOGlanHFxe8+SmlWLduXWafarYkNTUVSUlJOHToEOrXr8/sU6RIEQwaNAivXr1i41q4bgrimoWFhayFcV9fX0nfK1CgABYtWoTnz59L6onH644dO9CkSRMWY1f8z8TEBH/88QeztyGKZvfu3dMb9//ChQswMjJCmzZtJAn39u3bx+wkCLgnTpxgXuMFCxbUKewKyG012NGjR0EphYeHB4Cv9xThvhIVFYVZs2Yx+2kTdvUJ4PwexOFwOBxtcFGXw8kmiB/WxAKuNmbOnAlKv2Z1Fi/DFB4K/fz8YGpqik6dOqFo0aIayxM5afP582c8fPgQ/fr1Q4kSJdiyQ0opmjdvjtWrV7O6hjgJFCNunzBpEyYeq1atAqUUjRs3BgBcuXIlzaXYt27dYrFN//3338xoQpajbaI2cOBAUEqxdOlSVK1aVWNpMCC9LugTdnVN9u7fv4/58+ejZs2a7MXE/fv3f0KLsheCeCvEZVa3pS5BV3jZFRUVhZcvX7JjCTx58gQNGzYEpRQnT57MhJZkf4S+vHLlSib4tG/fHvv27ZO8lHj8+DHWrVun9SWYoXvuqd8ToqOjERUVhZiYGMn21NRUxMfHw9/fH4cOHcLVq1cl5WJBaPLkyTAyMkLfvn1lJ5QJvHv3jl0D582bh6ZNm4JSinz58mHhwoUsBJCAeCzfuXMHu3btQpMmTVC7dm04ODhg6NCh8PHxYX8vQ7Tr1KlTUbJkSWzfvl2nsOvr64siRYpg2bJlrL+dOnWKieDqORjEY9/a2loSisHQn4fEiK9jQl8Tnol0Pdu8fPlSp7ArJ9txOBwO5+fBRV0OJ5sxYsQIUEo1kiIB3yaAv/32G5vUaGPjxo2glGLJkiVYsGABJk2alNGnbdA8evQIZ86cwZkzZxAaGsqyFwOG9RAuTFBu377NQnWIJ7l//fUXWrZsKRFuLl++zJbB9unTh8U5dHJyYnXUJ8rz5s2DQqGAk5OT1njFhsL06dMRGBiotezGjRuoVKkSKKWwsrKShLBQF2jF33fu3CkRdtevX8/K1IWyt2/fom3btlAoFFAqlWjSpAkePXr0s5qXLenXr5/GS6z0eI47OzvDzs4OT58+1Tjmzp07UaNGDYMUfP4X4uLiJPGLCxQogGrVqmHIkCHo27cviw1LqTRhnyFdM7Uhbp+Pjw+GDBmCwoULo3DhwqhcuTKGDh2Ka9euISEhQecx1PuaeAn81q1bM+zcszsqlQqXLl1iIadUKhV76ZI/f36twq76dTExMRFfvnzB27dvJdsNrV+qVCrExMSwl9HFixfHiRMntNZ99eoV9u/fz/rds2fPWOzi/v37s+cB4Zr57NkzFCtWDJaWljAxMUHu3LkxZsyYzGlYNkH9ZXdkZCSAry9fK1SogOjoaADaX7hyYZfD4XA4PxMu6nI42YgXL16gefPmoJSia9euWgUGACwO38KFCwFoLtsaOnQoFAoFLl26JNmPixLfhy5vMm1x+wyF3bt3g1KKESNGSMTbsWPHMlHh5s2bAL62//Pnzxg5ciSUSiUr79evH9tPXbQVxAkTExOt8WMNhSFDhoBSirp162L37t1a6+zbt495mqnHeE2PsGtsbIxChQph6dKlOs/j1KlTGD16NNauXcs8UQ0RYSwOHjyYxccEvr50SMtz/PLly7C1tYWxsTFu3Lih9/j8GiolOTkZvr6+sLKy0rq03dHRUdI/DV2wELdvwoQJoJSya6OVlRV7AVa5cmUsWLCAee6Kx7f4GImJidi2bRuzp9gj0hDvP9rQ1U7BTikpKWjUqJFeYfd7jmsoCO27c+cOKKUoU6YMKxM/M2qzw5UrV2BjYwNbW1sWIkidEiVKwN7ensXXbt68uWzCA4jH6LJly9CuXTvkypULTZs2ZS9dDx06pPcY6sLu77//zoRdQ++bHA6Hw/m5cFGXw8lmbN26lU3gNm7cCEAqIn78+JF5UDRs2FAjjlxgYCAopShfvrzEK48/JHLSIikpCW5ubqz/CUsux4wZw2ILa5uoHD16FJUrV4ZCoYCJiYkklpxAQkIC/Pz82LFnzJjBygyxb86aNQv58uUDpRQrVqyQlIk9RPfu3SsRdleuXMnK9Am7AQEBbPIojmmojY8fPxqMmKZLNBDad/ToUVhaWqJ48eJwd3dPU9BVqVSYNm0aKKUYOnQoT4b2g9y4cQMbNmxAz5490bVrV/Ts2RP+/v64c+cOq2MofVAX4n4zadIkNqbnz5+P48eP49q1a9i3bx9LwlmsWDEMGjSIJflS5/Dhwxg9erRWb2dDF8/SGoPqL1l+VNg1dIQxFxERwbbt2rULPj4+emPsTp8+HZRSVK1aVWu9J0+eIHfu3Ojbty8OHjyI0aNHyyYpmrh9rq6uktBcwj+FQoHevXtL4hNrQxB2hRBfpUqVMsgEphwOh8PJWLioy+FkE8QPisOHDwelFDlz5sR///2nUefSpUtMrGjYsCE8PT2xefNmTJkyhT1ULlmyJNPbwPn1iYqKwuTJk1k/qlKlCvssCLraPJU3btyIUqVKsclNp06dsHLlSgQHB2PFihVsWTylFOPHj2f7GZo4IbbJrFmzMGXKFPZd7AUqFhb37t3LPPQVCgU2bdrEyvQJuz4+PkxAlwNiUfDatWvw8/PD0aNHJXXCwsJYeBrBc7RXr16sXD2Rz65du0AphaWlJfbv35+xDZAR+vqtobNp0yZ2rdPWp7Zt2wYTExNQSjFkyBCN8qioKEycOJFdD4REYAKGLo6L+0pISAi8vLzg7OyM6dOn4/r160z0EupxYVc/Yntu3rwZlFKUK1cO/v7+OkOALF68GJRSNGjQgG1LSUlhxzp48CAopXBxcZHsJ6eVDJ6enmycT5s2DcuXL8eUKVNYQt3ChQtjxYoVePPmjd7jvHz5EjNnzoSJiQkGDBiQSWfP4XA4HEOCi7ocThaga1ImPBDfvn0btWvXBqUUgwYNksR+E0SjzZs3M2HXwsJC4i1gyKIZJ2NJSUlBbGwsZsyYwcIkUEqxb98+APrFmu3bt6Np06YSrxVTU1PWN/Ply4fZs2dLfssQ0TbmBg8ejHLlyuHAgQNsm7qwK3jsmpiYpFvYFTBUWwqI27d06VLY29vD2NgYDg4OuHXrlqTu3r17Wf8rWrSoxOYCycnJ2LlzJ6s3Z86cDG+DoaMrhIDc6NatG5RKJXuxqlKpmD3Onz/P4o736NGD7SN+GfThwwdMnToVZcqUwaBBgySrIwzdrmI7bN++HXnz5oWRkREbp2XLlkXfvn2Z5ykXdr+PW7duwdzcnIUA2bFjh1Zh98yZM8zuYg9xALh+/TpsbW1BKWVJfQ3dOxf4NvaEsFONGjWCUqnE3r17JfXCw8NZPPHixYtj1apVaQq7UVFROHLkCPvOn9s5HA6H8z1wUZfDyWTEk7KZM2di165dGnU+f/6MqVOnglIKOzs7nD17FoBUBEpOTsY///yDsmXLolChQqCUok6dOliwYIHW3+JwvoeePXtKXhS4u7vj06dPWuuKJyDXr1/HmjVrYG9vjyJFiqBgwYIoWLAgpk6disOHD7N6ht43xZPcf/75h9myQYMGOoVdcYzdtIRdOSFuuxAeRKlUwsnJCf7+/lr3WbNmDROCKlWqhB49euDff/9FaGgotm7dilGjRrFyV1dXrb/F4XwvYWFh7GXWxYsXoVKpWJ8SJ+zr06cP20dIQiW+Jr579w4PHjyQhGaQU98Uv3BxcHDA77//DktLS7bt999/x8OHDwHoF3YFL2f1MFVyRLDPvXv3kDdvXq3CrhBjNz4+HmPHjmXCbo8ePTB37lyMHz8eRYsWBaUU3bp1M/j7uIC4nZGRkfj06ZPE017og0K99+/fo2LFit8l7Gr7LQ6Hw+Fw0gMXdTmcLKJ3796S2KXnzp2TlL958wYVKlRgIRYEkUh9YhcTE4PIyEjcvn2bJV0B+IMh58dITU3F06dPWd/s0aMH++zs7MwECHXUPXXi4+MRGxuLt2/f4t27dxq/ITcWL16MggULQqFQoG7dulzY/QH+/vtv1he3b98uEby0eYr5+PhI4hxaWVkxYcjIyAjm5uaS2M78msn5HrSNx5CQECZEivukWNAVx3cWrqcfP37E4sWLZbV8XRf37t1DqVKlQCnFzJkzWYLHhw8fYvjw4SyxVKVKlfQKu40bN2Zj39fXN2sak0Voux6qVCoWfubevXss5nulSpWwfft2jdi5ly5dQp8+fVhyP/G/5s2bS2wtF/r27YvcuXNj9+7dKFGiBNatW6dRR7DL/yLscjgcDofzPXBRl8PJAu7du4ccOXJIHpJLly4Nd3d3yQPyyZMn2YP39OnTNR7UdS15k8NSOE7GIPSdkJAQHD16FMnJyXB3d2f9dNy4cWkKu2LvNPF2OSIWaRYvXox8+fJ9t7C7efPmTD3n7Iifnx8L5bF7925Jmb7+dfLkSQwaNAi2trYwMzNDzpw5YWlpibFjxyIgIIDVk4MwwQXDn4e4v7x+/Zp9vnbtGkt4JGw/d+5cmgn7vL29QSlF3759M+Hssxfq4vjhw4ehUCgwduxYjbqvX7/G/PnzWdzStIRdBwcHFC1aVFZ9X3w9jIyMxNmzZ3H16lVWJvTd9Ai7d+7cwapVq2BnZ4ciRYqgWbNmcHNzY/aUk11PnToFa2trFi+XUgovLy8AmvcgwS6xsbGoVKkSF3Y5HA6Hk6FwUZfDyQI+fPgAFxcX5MyZE4ULF8bQoUORO3du5pW7Z88evHr1CqmpqRg4cCAUCgXq1KmDa9euAZC3SMbJOFJTUyWTPoHo6GhJ8jRdwq4ub3K5oCumqDg5148Ku56enhl89tmbESNGwMjICGPGjEmXACu+RiYnJ+Pt27e4dOkSbt68KckED8ijv4ptNnfuXNy8eTMLz+bXRtxfBgwYgLx58+LBgwcAvsbTVCqVoJTCx8cH169fT1PQjY6Oxp9//gmlUinrFzgBAQF48+YNNmzYAEopLly4AEAzMefbt2/TLeympqayvi+HFzfivnn48GE0bdoUlpaWyJs3ryRR5/cIu8DXcCCvXr2S3PflYE8xsbGxWLFiBcqVKydZZQdov4doE3ZLliwJT09PvHr1KlPPncPhcDiGDRd1OZws4tKlSyhYsCAopZg1axYuX74Me3t7luCjS5cuePDgAS5dusQSq0yaNIntz4Vdzv9KWmKWeNL28uVLvcKucKwDBw6gb9++kqXxckBsq3PnzmHVqlUST1CxrdMr7O7fvx9NmjQBpVSr15pceP78OczMzEAphbe3d7r3E66RchMf1BHfKyZNmgRKKRwdHREdHZ2FZ/XrM2fOHHY99PLywufPnwEAo0ePBqUUNjY2LCmVOIauunfj2rVrQSlFrVq1mDhsiCQmJgLQft/x9/dnK5YmTJiAcuXK6R23b9++xYIFC/QKu+L95XANEI/zHTt2sGtm48aNMWvWLHz8+FFSPz3CrhBjV99vyQGhvR8+fJAIu6ampggJCZHUESMWdqtWrcr2EfJkcDgcDofzM+CiLoeTgahP3tQfkIUllw4ODnj+/DlevnyJKVOmsMy5FhYW8Pf3R58+fdjkUX3pMYfzI4gnuUePHsWKFSswcuRIbN++HdevX2dl4j6sLuw6OztLJopCQjBKKXbs2JE5DckGiG25ZMkSFC9enIk0oaGhrOxHhN2dO3di5cqVGdyC7E1YWBjMzc1hYWGB//77D4B+UUGbaCQ3EUIbW7ZsYfGEly1bJgkbwPk+rl+/jsKFC0OhUGD//v1M0AWAoKAglChRgl0LGzduzMrUk03u2bOH1Vu7dm2mnX9ms2TJErRu3Zq9SBCPx6SkJKxYsYIlfBXiXd++fVvvMdWF3SpVqjBhV87jfdeuXaxPubu7S5LEqV8bv9djV84IfSouLg4rVqxgOS9KlCjB7ktpeewWLlwYf/75Z+adNIfD4XBkARd1OZwMQjypCAgIwJcvX9g24SHv3bt36Nq1K5RKJWbPng3ga4KpO3fuoH///myCU6JECVhYWMDIyAht27bFo0ePMr9BnF8WXRM54KvnnpWVlSS+s4ODAxYsWMDqiMMHqAu7gwYNwtatW+Hl5SURe+WCui0ppVAqlejfvz/8/f016v+IsKvtt+TEkydPkCdPHpiamsLPzw9A+mI5rlmzRuItLTcEGwn3nZ49e0KpVGLnzp3ffQy5o26HwMBAUEqxePFiAJoioru7O4yMjKBUKlGtWjVs375dUh4eHs48dAXxTcDQBEnxy74WLVpIEroKvH37FuvWrWNJ0CwtLdnYTY/Hrp2dHYt1KhYx5UZISAh7qThz5kxJma5+pU3YrVy5Mvz8/GS34kbX6iX10FKCsPvbb78xD3PhBa4+YVf8Ukeu93MOh8Ph/Hy4qMvhZDDDhw8HpRTt2rWDj48P3r9/D+DbQ+L27dthamqKnDlzSmKeAcDmzZvRtm1bjczDZ86cyexmcH5R2rRpgxEjRrAJhLal2AqFAqVKlULNmjXZd0opXF1dWV2xsPvq1StMnz6d9UdTU1MWR1KIMQcYviAktqWrq6tkKXZsbCwrU5/k6UuedvDgQZ37yZWYmBgUKFAAlFJ07dqVbddnn+vXr8PBwQF16tSRpUeq2DbBwcEAgPz586NBgwbp9sBT9+bnAH379sWGDRsQFBSk9V4stvuYMWMkCVHbtGmDP/74A/369WOrcdSvmYYo9Dx69Ah//fWXhtcyIG1vTEwM1q5dy0TJ0qVL48WLFwD030vevn2LhQsXwtzcHI6OjgZpw7QQ+t28efNgYmKCDh06sHtQel4SiIXd/PnzM4H82LFjGXfS2Qxxv/nvv/9w5MgR7Nq1C5GRkZIVSUI99VAMaQm74m383s7hcDicnwkXdTmcDOT58+cYNWoUm7wVLFgQrVu31oib169fP1BK0apVKw0B4smTJ1i3bh0sLCxAKcVff/2VmU3g/ML4+vqyvjd58mTJpEUQJSilCAgIYJPnXbt2wcnJiZWNGTOG7SMWdpOSkrBp0yYUK1YM+fLlQ506dbBkyRJWLqeJ9YoVK3SGRxHbTIw2j10TExPUrVsXgYGBGXq+vxKCIDF37lyYmpqCUgoPDw9WrmtyvGjRIuZJLl4aLzeE0D3Lli1DrVq1JOM5vfTq1UvD7nJEvBqhfv36sLGxkcQeFRBf+zw8PFC/fn2NF7MKhQJVqlTB8uXLte5nKAh2CQ8Px8KFC9n2f/75h91ztAm7QkiF3377DW/evAGgX9h9/fo1tm3bxuoYoi3T4vPnzywvw9SpU797f8F29+/fB6UUtra2srGjuJ3u7u4oWrQoG6vFihXD8OHDWYgFcX19wq6hedxzOBwOJ/vCRV0OJxM4f/486tati7x584JSigIFCsDDwwOXL18G8NXzsVKlSsiZMye2bt0KQHMCExISgg0bNrDvcnnY5vw4z549w/jx4yVLfIV+JXjpCv1N3J9u3ryJMWPGaBV21fvl48eP8eTJE0RGRrJtcuqbUVFRaNy4MZRKJRYtWgRAe3KZffv2YdOmTViyZAlevHihIfYuW7aMLX0Vi+OGjj6PJXE/Onv2LCpWrAhKKcqWLYvVq1drrQd8e2Fhamoq6/AL4eHhLNGe8K979+7fdYxDhw7B2tqahRW5ePFiBp1t9ufEiRPo2LGjxJ7aQqwA0j4ZFhaGLVu2YNiwYfjjjz8wYMAA7Ny5Ezdv3tRa39BQvxZu3LgRlFJ07NiRxdj9X4Rd9eMboi2DgoIQGhqqVyh8//49bG1tYW5ujhMnTgDQf31VP5ZKpWL3pYiICFkK5EJoKaVSCSsrK5bM2NjYGBUqVGCe+SqVSq+we+3aNQDcI5fD4XA4mQMXdTmcDEZ4cI6IiICXlxeqV68OSinMzc1RqVIlbNy4ESqVCh4eHsiRIwfq16/PHqy1LZkXb+dw0iIqKkoSGsDNzQ2fP39GzZo14eDgIPEMF/ezu3fv6hV2dU0u5eadEhISAmNjY1hZWbFl7sL4jYmJwaFDh9CmTRuJEFSnTh0EBgYiOTlZMpZnzZqFiRMnZkk7sgJx2y9cuAB/f3+sWbMGBw8e1DoZ3rRpE8zNzdnS4HHjxiE+Pp7FKQwLC5N4U86dOzfT2pJdCQ4ORpcuXSR97/HjxwDSN1aTkpKwYMEC2NrawsTEhMU0lqNYoVKpcP78ebRr107rdVGbSKbrOGLkYkuVSoX4+Hj07NkTJiYmyJEjB/788890C7tv374FYPhhfdRZsmQJKKVo3bq1xFtUnXfv3rEwNUKOhvT0rf379+P06dPsu3gfOdl67969bFz7+vri+vXrePHiBYYPH47SpUuDUopChQrh5MmTAPQLu6VKlcKlS5eysjkcDofDkRFc1OVwMpn3799jwIABKFKkiCSx1Jo1a1g2XRcXl6w+TY4B8eLFC4mwO23aNDRv3jxNrz19wi5/sfCVgwcPglIKCwsLnD9/nm1/+PAhBg4cyBL/5MyZEyVKlGAhBBo0aMC8z7TZ0tDtK27flClTUKhQIdbPjI2N0bBhQ1y6dEmSWAYAVq9ejYIFC8LIyIgl9Klduza6dOmCUqVKaY1TKhfRTIxYOAwODpZ4mIrFbn22EcqSkpLQvXt3UErRtm3bjDvpbIxgT5VKhXPnzqFDhw7MnuvWrWP15NjXvpfHjx9j8ODBsLKyglKp5MJuGvj4+LC+NmnSJK11BMG8fPnyoJSiV69erExfn3zx4gUaNWqEIkWK4NmzZz/93H8lJk6cCEopduzYAeCb3RISEuDl5YUqVaqAUgobGxudwq6npycTdmfMmJE1DeFwOByO7OCiLoeTiYgfrnfv3o2BAweyh/XatWuzeGhlypThiWk4PxV1YZdSioYNG6YpHqoLu87OzqxMbl65YoS2P3z4EJUqVWL2XLZsGZYuXcpCKRQrVgxOTk64d+8eHj58iO3bt8PExASUUqxcuVLjeOqfDR1hIq1QKGBrawsbGxtYWlqCUoqKFStix44diIuLk+wTEBCAP/74Q5KESvjn4OCAxYsXs7qGLo7rQ13YFXvsikP5pEfYffnyJcqVK4eCBQvi3bt3GXfSWYy2sSdsE6+cOXfuHDp16sTs6ePjw+pzYVc3gi2fPHmCAQMGfLewW758eSbsymlse3t7S5LMxcTEaO2rS5cuZX1y2bJlbLt6nxS+BwUFIVeuXGjWrBlL4is3vnz5gqSkJNSpUwe1atVCbGwss61gp8+fP2PTpk3pEnbnzZuHWbNmZU1jOBwOhyNLuKjL4WQy6hlwN23aBDs7Oyb0CP8PHjxYknGXw/lfefHiBcaNG8cmfeXLl2dxnfUhCLtKpRKUUvTr1y/jTzYboS9r9ZcvX+Du7s7iZQuepkLiw4MHDyImJobVj4mJQdWqVTUm3XJEnMhvy5YtCAsLw+3bt7F9+3aWqKZcuXLYvHkzy+Qu8PLlSwQHB2Pq1KkYNmwYxo0bh8DAQNy+fZvVkYPok9YLALENgoOD8ccffzCbb9y4kZWlJeympqbC2dkZtWrVMljRUmwrlUqFN2/eIC4ujiVDEyMIu507d+bC7nfyo8KunZ0dKKXImzevxvVATixcuBCNGzfGtWvXNMTHa9eusTja+fLlk7y8Ub9W3Lt3D8WLF5ddEkRdY7NLly5o166dxnbBbp8/f8bGjRvTFHbFiTnlcA/icDgcTtZjRDgcTqaiUCgknwcMGEAqVqxIDhw4QDZs2EBevnxJCCHEyMiImJmZZdVpcn5hUlJSiJHRt8v7ly9fiLGxMSlcuDAZP348AUBWrFhB7t27R7Zu3UocHR1Jjhw5dB7vt99+I8OHDyeEEOLp6UmSkpIyvA3ZhdTUVKJUKgkhhJw9e5bcuXOHFCpUiHTs2JEoFApiZGREZsyYQSwtLcnZs2fJ8ePHSbNmzUj16tXJzJkzCaWUEEKISqUiCoWCxMTEkJiYGEIIIWXLls2ydmUFYlsSQsjJkycJIYT4+/uTbt26se0VKlQgtWrVIk2bNiVhYWHEw8ODEEJIly5diJWVFSGEkPz585OCBQuSunXrav0tlUol+S1DRGzPN2/ekLCwMPLs2TOSO3duYm1tTWrXri2xgdhWQUFBZPDgwYQQQgYOHEgUCgXro+oI21xdXUmhQoX01v1VEdty48aN5OLFi+TcuXPEyMiIFC5cmDRr1ox07tyZ2NvbE4VCQSilpF69emz/vXv3kv79+xNCCOnbt69B2uhnQSklAEiJEiXI1KlTCSGE7N69mwQFBRFCCFm5ciWxsbFhfxNra2vSrVs3olAoyLhx44i5uTmxsLDIyiZkGeHh4WTSpEmEEEJmzJhBZs2aRRwdHVk/q1y5MunRowcJDw8nz58/Jy4uLuT169dk/Pjx7H715s0bcuvWLTJo0CDy/Plz0r17d+Li4kIIIQQAu2cZIuJxHhQURB4/fkzu3r1LKlWqRF68eEEKFSqksY/QX01NTUnv3r0JIYSsXr2aXL9+nTg5OZEdO3aQxo0bE4VCweoR8tWWhn4P4nA4HE42ISsVZQ5H7og9J5KSknD37l1UrVoV48aN01qHw0kLcX/Zs2cP+yyOQfjixQu4uLhI4vSlJ0bhzZs3ERAQoPW3DBGxl83ixYtZfNz69evj+vXrkjqC98/Tp08l+6l76qxevRqUUtSoUQMPHz7M6CZkG8R2OHHiBCIiIlCrVi00atQIHz58QGpqqsYy92fPnjFPMl0eu3JFbM8lS5agfv36GqEo+vbtyxLyiflRj93vqfMrIW7P+PHjWTgQdXs2aNAAHh4eEntyj90f53s9dt+8eYM9e/awe5VcvSB9fX1Z6Jm2bdvixo0bGvfiRYsWseRelFI0adIEnTt3xsSJE1G/fn22sqRZs2aysad4LE6cOBGmpqZsnAshf6ytrXH8+HGt++vy2C1YsCCOHDmSKW3gcDgcDkcbXNTlcLIJwgOjOOSCoT9kczKOwYMHg1KKiRMnsm3qwq44xq67u/t3JZ8x9L4pbt+kSZNAKYVSqcSAAQPg6+urcz/x5FrdnkFBQczeK1as+Pkn/QvQr18/5M2bFwsWLICNjQ0GDBigtZ5g/+fPn8PW1haUUtjb22PTpk2yF3bF4oQwhpVKJUxMTFC2bFmYm5uzflahQgVMmTJFsiQY0BR2N2/enNnNyHbMmjWL2WPAgAGYM2cOxo8fjx49erDtBQoUwOjRo5GUlMT2S0vY5ehGuF5GRERg4MCBTNjt2rUroqKiAMgzkWRa+Pn5sXBIuoTdbdu2Sca4+F+RIkUwcOBAdo+SU+K5GTNmsBc3zZs3x++//87yWZiYmGD48OF48OCB1n3Fwu7mzZuZsOvu7p6ZTeBwOBwORwIXdTmcbIT4oZx7+HC+B6G/qFQqxMTEoH///mwCN378eFYvLWFX7pNlQDoOxfZZv369RFAUj1F9XsuRkZFYtWoVO46bm1u69jM0Xrx4AWtra1BKUbJkSeTMmZOtSlD3JgV0C7ve3t6yF3YBYNq0aaxPrVu3DleuXEFKSgpOnz4NDw8PVmZtbQ1nZ2etwm7Xrl1l+6JBPPZu376NIkWKgFIqWeEg4O/vz7zGc+XKpbG6QRB2xSLapUuXMqMZvzy6hF2xxy5/HtIkPcJudHQ0du7ciSFDhqBJkybo0qULZsyYgePHjzObyknQvXr1KvNSDgoKwsePH5GYmIjbt2+zRJI5cuSAu7s7Hj16pPUYYmHX09MTCxYsyMwmcDgcDoejARd1ORwO5xdHLMRGR0fjxo0bWLVqFRo3bsyF3f+BlStXMrvs3r1bUqZNhASkQlFiYiLWrVuHDh06sONMnTqVlcvRzjdv3kT58uWZPezs7PDq1SsA2gVuXcLuqlWr8OnTp0w99+zE4cOHkSdPHlBKERgYCEDTfocOHUKZMmWYZ96SJUs0+tyFCxeYENm/f/9MO/+sRl3IOnz4MCilLGu9SqWCSqWSiInHjh1DhQoVWB/08/MD8K2PCsJuo0aNZGXLn4G6sJs7d26YmJigSZMmePv2bRafXeYi2ELb9VBd3E6PsKtrX13bDAn1652fnx8opfDy8gKg2X4nJ6fvEnbF1xE53s85HA6Hkz3goi6Hw+H8wognEh4eHnB0dISZmRkopbCwsJAsuZwwYQKrq0/YnTx5sqy8d9RRqVSIjo5G48aNoVAosHDhQrZdfcK8b98+bN68GYsXL8bLly8lxxCWcyuVSjg6OmL16tWsXI4TQGECfePGDbbc1cLCAlOmTMH79+8BpF/YFcQ3ubJw4UIoFAq0b98eiYmJkjKxDY8dOwYbGxtQStG4cWOEh4cDkPa/U6dOSeLqyom//voLixcvxvbt20Epxd69ezXqiO156NAhJqL17t1bo45KpWI2BuTlBfm/IhZ2hfBB9erVk9W1UtzX3r59i+joaNy5cwcJCQlsu3qf0ifs6hKI5bRCBADGjBkDHx8f+Pr6wtTUVEP8Fvex3r17p0vY5XA4HA4nu8BFXQ4nDdQnFHKaYHCyN9rCBCgUCowZMwYbNmzAzp07MXDgQJQoUYIJtumNsTty5EjZTfzEXL58GcbGxrC0tERwcDCAb965MTExOHjwINq0aSMRze3t7SUJUxISEtCxY0fMmzdPshRbztcQbcJu6dKlsXTpUhZSQZ+wGxERIfF2liNJSUnMC3/s2LFa64ht6O/vz/ro/PnztdYRkJMIuWXLFmaXZs2aIU+ePLh37x4AzTEqttXSpUvZfqdPn9ZaBzB8L8iMQLBheHg45s2bx/qjHGypnuS0VatWKFq0KMzMzNCyZUvMnDmTlf8vHrtyY/HixSxsyu+//47ixYtrrSe+9nFhl8PhcDi/ElzU5XB0kJKSIpnY+fv7S7wlOJzswrJly5jIoM3T7MCBA2ySok/YjYqKYsJu3759M+XcsyunTp1inqSHDx9m2x8+fIgBAwagaNGirLxw4cLIly8fKKVwcHBg4QQAzcm3oYsT+oQEoe3C/zdv3kS5cuVAKUXZsmXTFHbVBUc5CJDa7JCcnIx69eqBUgonJ6c091WpVCyJV8eOHXWGDpEb9+/fR9++fSUvZubMmaOzvuCpHxISwkJf+Pv7Z+IZZx2Z+SJKvc/LYZyL8fX11ZrcjFKKzp07Iy4uTut+XNjVztatW9n10tTUFHnz5sXVq1c1wqsAuoXdKVOmcGGXw+FwONkWBeFwOIxDhw6RcePGkdTUVKJUKolSqSSEEDJ69GjSs2dP4urqSlQqVRafJUduANC5PSEhgRw7dowQQsiECRNIx44dWf0vX74QQghp164dcXV1JYMGDSKEEOLh4UEmTpxICCHEyMiIpKSkEEIIKVSoEHF2dia7d+8mPj4+en/b0ClQoAApW7YsSUpKImvXriULFiwgK1asILVr1ybe3t6EUkr69OlDQkNDyZkzZ8iyZctI/vz5yZ07d8i2bdsIIV9tp1BIb7Pq3w2J1NRUQiklhBDy8eNHEhYWRq5fv04iIyMJId/arlAoiEqlIo6OjmTXrl3E3t6ePHz4kHh5eZHNmzeTuLg4QinV6HtGRkZ6vxsaYnsmJiay7cbGxsTBwYEoFAry/PlzEh0dTQjRHKuCDSmlpEiRIoQQQp4/f87Gu9yxt7cn06ZNIz179mTbLl++TCIiIrTWp5QSSimpVasWKVSoECGEkKdPnxJCiEE/F2zfvp34+/uTjx8/ZsrvCX1ewNDHuZjjx4+Tvn37EkIIGTZsGFm9ejXx9PQk7du3J+bm5mTv3r2kR48e5OXLlxr79ujRg/j6+hKFQkEOHz5Mpk6dSkJDQzO7CdmOPn36EGdnZ1KnTh2SnJxM3r17R06ePEkopUShUEium+LnoW3bthEnJyeSlJREFi9eTJYtW0ZiYmKyqhkcDofD4egmy+RkDiebERISojWp1KhRo9j2Y8eOZeEZcuSMLk+p8PBw5MyZE5RSbN26VaNc7Klz8eJFtG7dOs3kaWn9plyYOnUqlEoljIyMQCmFiYkJKKVo2bIlDhw4gHfv3rG60dHRcHR0BKUUc+fOzcKzzhrEfWXdunXo0qULcubMCRMTE5QpUwa9e/dGZGQk84wSe0l9r8euoSFeci70KbEH2ciRIzF8+HC8efOGbfPy8mLjWByrWVfszL///huUUlSvXh3x8fEZ1pZfkfDwcJYgSRi/+pJN3bhxA7lz5walFHv27Mnck81khGSRlStXRmBgID5+/JjVp2RQCP0sNTUVqamp6NevHyilklALAPDkyRN4enoiV65coJSiVatWiI6O1npMf39/dq8S3+PliHgc79q1Cw0bNmTjfPv27VrrAdLnIeHaoCvUDYfD4XA4WQ0XdTmc/+fixYto0qQJLCwsYGFhgcmTJzNBV6FQsCXY6REZ5LZckJMxtGjRAm5ubuy7tr737Nkz5M+fH8bGxvDx8QGgv/8Jk3RtydPkJOLqG8fi5ekLFixAq1atYGRkhLZt22rEcxVsFh4ejtKlS0OhUODAgQMZc9LZFHG/cXNzY8nhcubMiVKlSjEBrEaNGti7dy8TFfUJu8uWLWPCrhzYsWMHKKWYN28eXr9+zbaPHTuWjdUHDx6w7fHx8fjjjz9YWWBgoOR44v795csX9OjRAwqFAjNmzMj4xmQjdCWKUt8WHh6OPn36MHsuXbpUI9ySUH/Tpk2glMLOzg43b97MwLPPei5fvswEwho1aiAgIIALuz8J8Yub2NhYJCYmokyZMmjatClLfii+tn748AEbNmxIl7C7efNm1KtXj4dagdSGYmE3Z86c8PPzY2X6hN0tW7borMfhcDgcTlbDRV0OR8SFCxfQoUMHmJqasomMOBlKeh7mxA/qO3bswOPHjzPqdDkGjNgTTyy8ilGpVHj8+DEKFCgASin+/vtvSZl6XeDrBKdSpUowNzdnx58+fbrO/QwR8SQvOTkZDx8+xJ07d3Dr1i2t9VUqFaKionRmywaANWvWME9IIdmSHBDbZPz48ZKEXGfOnEF8fDwePnwIS0tLUEpRrlw5bNu2DR8+fGD7axN2y5Qpg9mzZ+PTp09Z0q7M5MuXL+jWrRuL+bh8+XKkpqZizJgxoJTC2NhY40WBSqXCzp07UbVqVVBKYWRkhB07dmg9fmBgIIv/vG/fvsxoUrZAPEYTExMRFhaG+/fv48aNG5J6Yk9pcYzdcePGSVbnvH//nonv2rwpDQ3BfteuXWOrQbiw+/NZsWIFWrVqhQsXLiBXrlx6PULj4+Oxfv36dAm7Qr82dGFXPS5uUlKSRpvFdQICAlC/fn12TUyvsKvtO4fD4XA42QEu6nI4kD7I3b59G3Z2dlAoFKCUokuXLqzsex7ohCVbo0ePloVQxvm53L17F3/99Rcopejfv7+kTF1QHDFiBCilsLKywvHjx/Ue98uXL6hWrRqqVauGiRMnMoFizZo1P70N2RGx7TZt2oTevXvDysoKlpaWyJMnD1q2bIkVK1awibI272X168Du3buZHZcvX56xDcimeHp6SrxGxZPo+fPnsxUPQjK5rVu3ahV2b926BXt7e1mIZmJiY2OZp6hCoWCJfSilOleJfPnyBYsXL8Zvv/0mCani7++PuLg4nD59WpJEcdq0aVnRtCxBPRxIx44dYWZmhty5c0OpVKJr165MPAe+iT7qwm7RokXRpEkTdO3aFdWqVdOabNKQkx8KbQsNDeXCbgbw4MED1qcaN24MS0tLbNy4EYDu5019wq7cnjXF4/zw4cNYuHAhGjVqhLp162LYsGFYvXo14uPjNezyPcIuh8PhcDjZHS7qcjhqCAKEUqmEsbExcubMCRcXF/aAnZ4l6pcvX4aDgwN7WA8KCsro0+YYCJMnT4aHhwdUKhVCQ0Ml2dXFXnbifujv7w8bGxsYGxvjjz/+QGhoKCsTT1AEj1N7e3s0atQIly9fRufOnZmHqboHm6GhK0yA4A0pfM6dOzfq1avHsl3rGvPPnz/HqlWr2DgXh8owZKFHnbt376JKlSpQKBTYtGmTpGzKlCnMPitWrEChQoVAKUWFChV0CruhoaGYNWsWO4ZcJtlJSUno37+/JDzKzp07Wbn6WAa+euGtXbtWEiuSUgpbW1uJkC4XERKQtk/sPW5ubo4KFSpI7NSlSxcN8Sw8PBy9e/eW1KtZsyaKFi2K/v37S5ZiyyFkzf8q7Grrb3IZ0+lh06ZN7N5DKUXHjh3TXKEQHx+PDRs2sBUQbdq0QWRkZCadcfZAPPamTZuGPHnysOud+N7euXNn+Pv7IykpSbK/PmHX0K+RHA6HwzEsuKjL4Yj4+PEjli5dCjs7OyxcuBCdO3eGiYkJLCws4Orqyh4i05rICUtja9euDUop5syZk679OPJG8NSrXr26JCkSAJZARRwqQRAjVCoV8+rNlSsX+vbti5CQEMn+Qt/z8fEBpZTFhhWSqigUColYYWiIRYRJkyaxid/UqVOxa9cu7Nu3D15eXrCzs2OhKYoWLYqHDx8CkE7y3r9/D/WdDFAAAI5TSURBVC8vL3Ts2FFyHAG5jfMNGzaAUgpnZ2fExcWx7TNmzGD2EUIDXLp0CXnz5gWlFL/99puGsKtuO7nZcvDgwUyMVSgUWLNmDd6+fau1rtAnU1JScPXqVYwbN47FLxb+tWjRAqtWrWL7yMmekydPlqxECA0NhUqlwsmTJ+Hu7o48efKwkCDqIk54eDh69eoleSEhxDkVkJMtf1TYFV93d+7cqRH7mfOVzZs3s77m4OCA48ePpyksxsfHY+PGjawfjxs3LpPONusR9ytXV1dmuw4dOmDMmDFwcnJigi2lXxP9eXh44PPnz5LjBAQEoEGDBqCUwtLSUmcIGw6Hw+FwsjNc1OVw1IiNjWUeDxcvXkTbtm1/SNhNTU1l4lHlypU1HiY5HDEjR44EpRRmZmY4e/YsgG8Tl6dPn6Jr165aY+AK/UqlUqF58+bM66ROnTrYsWMHiy0XGRmJ7du3s2Ps3r2bHaN9+/Zs+WdKSopBe6ls27aN2WDv3r0a5WFhYRg+fDiKFSvGBJ+nT58C+Pb38PDwYHFMHR0dsXr1ara/oQs94r4hfB47dixy584tiT8q9mD29fUF8NU2X758wbRp01jMcnt7e/j6+jJhV85cvHhRshRbEHcXLVqEd+/ead1H3eMxLCwMISEhOHHiBK5duyaxq6H3TTG7du2CkZGRznEeFBQEMzMzUErRvHlzrccIDw9nYZQopVi2bBkrk6OnqdB/fsRjV7hmlipVCqdOncqM0/3l8Pb2loiTumK8i4mPj8eKFSvQrFkzg4+dq42lS5dKnmnE/TAyMhLr1q1j5eXKlcPq1as1PPMDAgLQqFEjVu/q1auZ3QwOh8PhcP4nuKjLkS26Ekmp8++//6Yp7Ar73r17V+LNk5ycjDp16oBSmq4HdI482bZtG5RKJczMzHDmzBmtda5evYohQ4ZoFXaFpZqpqakS71FKKWrVqoX69eujYsWKbJuQUE3ot0JM3kaNGmVsQ7MBgwcPhkKhgIuLC4BvNlCpVOzzixcvMHHiRBQsWBCUUjg5OWmIjr169cKMGTNw+fJlts1QRTNtL7ISEhIkdQ4ePMg+X7lyhcV59fDw0Dje/v37JctjK1SogHXr1vEXX/jq9SzExRY8RRUKBRYvXqxT2AXSXi4sFxFS/ZomxBEWh/e4cOECEyWdnJw09hWjHmN3xYoVmdCK7MuPCrs1atRg3pBCrGxDfnkoRnyPUUf9nrFlyxbW1zp37ozbt2+nefyPHz/KJimamNevX6N+/fpQKpVYt24dAO023rdvH3uJWL9+fXbPFou7AQEBKF++PIYMGZI5J8/hcDgczk+Ei7ocWSJ+kE5NTcWbN28ky4bV62gTdoUHQiFO1z///AMLCwt07NgRycnJrHzjxo1o2rSpwQo+nP8dd3d3UErRq1cvyUTX1dUVixYtYt+vX7+OQYMGsUnfjBkzWJkg7KpUKkyZMkWy9FD4Z21tjSlTprB9UlJSkJSUhLZt24JSih49emRCa7OG1NRUvHz5kgkRaSWGe/bsGfNg/u233/DgwQMA0IjLJz6+oRESEsLEW3GMx+HDh8POzk4jRIiAj48PFAoFatSoweISA99s9ObNG5QoUQJ9+/aFjY0NKKWYO3duBrYk+6Pt/vD+/XvmKapP2JWjoKMLlUqF6OhotiRdeNkg9L3g4GB2DejduzfbT3ihoK1Py1HY1fcS4HtCMYiP06RJE1BK4ejoqPFSyFARtz86OhoRERH477//WGIzQPPeIYRI+h5hV/235MD58+dBKYWpqSkuX76s11EjMDCQ2XTUqFFa61y7do195s/rHA6Hw/mV4KIuR3aIH9aWL1+Orl27wtraGuXLl8fYsWNx9epVNjkWv8lXF3bHjh3Lyo4ePcoeGCdNmiT5vffv30tiH3I4AqmpqVCpVGjTpg0opahTpw4rGzVqFEvu8+zZM7ZdXdjVFooB+Lr0cMuWLZg4cSJ69uyJNWvWMA9A4Js4eefOHZQtWxa5cuWCt7c3AMOYHGoba2/fvoWNjQ3MzMxw4MABANozjAvtv3r1KlvCLTfR8fDhw2xpemxsLNs+ZswY1vcuXbqksV9KSgoTwAYPHqz12CdOnGDiWHh4ONzd3TOsHdkRXeNLW5+NjY3VK+wK+xw9ehR///23RCySA9ps9ubNGxQsWBBFixaV9F1dgq74Rc3cuXO1xn1VF3bFcYoNBfV++fnzZ8THx0u2qXvtp0fYFa6xt27dQtmyZZEvXz6EhYVlVDOyDH2i4u7du9GgQQMUKFCAheRydnbW+ZLwR4VdOSDY1dfXl4Xw0fVsLf4bTJgwAZR+TYR6//59rXUAw3xBy+FwOBzDhou6HFkhflhzcXFhcTHF3ox169aFp6cn80xTF3bbt2+PHDlysLoDBgxg+4oTVag/GBqCUMbJGPbs2YNcuXKBUoqhQ4ey+LoKhQKHDh0CIO0/+oRdXZNEMcKxEhMTJYKyoQhC4gneli1bcOPGDQBfQwaUKFEClFL0799f75hMTk5GSkoK6tatK7skNImJiRgzZgxbstqpUycAgJubG+tzhw8f1rm/cE2sX78+88gT23ru3LmglGLTpk2S/bQJ7IaGuG9++fIFDx8+RFhYGGJjYyXtF9tLXdhdtGiRJHnasWPH2N/lyJEjmdOQbIDYlmfPnmUhUp4/fw4LCwtQSrFnzx4AugVdsc39/f1BKUXbtm01xExAU9j18vLKoJZlPuLnleDgYCxYsAC1a9dG9erVMXjwYLa8XVz3e0MxxMXFsecucXxiQyAwMBCHDh1i/UlsT3Ese2NjY0nomXbt2uHOnTta70Xqwu6dO3cyrT2/AgcPHgSlX5PDnjlzRhJCSRvC+KaU4t9//83EM+VwOBwOJ2Phoi5HlsybN4893Lm4uGDy5MmYNGkSFAoFKKWws7PD7Nmz2cREPPG7cuUK/vrrL1hbW7NJtlKp1FjWzuGkl4iICDg7O7OJsfBPiK+rLSafPmFX3P/EsSSF/xMTE3Hjxg20bNkSlFIUKlSIhRf41RHbyNnZmYW1ePr0KVJTU9GtWzcmPojj4epCEL379u0LQD5j+8GDB3B1dUXevHnZNVHoa4KXsy7PNF9fX+TOnRuFChXC8uXLmdiWmpqKgIAAUEqRN29eXLx4MXMblcWI+866devQuXNnUEphYmKC4sWLY/jw4QgJCWF1xMKQurDr7u6OwMBASeI/8bJiQ0dsmxEjRsDc3ByrVq1CQkICPn/+zDLae3h4SGLo6hJ0379/z66ny5cv1/m74eHh7O928+bNjGlcJiMex/7+/ihYsKDGy25KKTp27KgRW/x7hd1Lly7B1tbWoDxPFy5cCEopmjRpguPHj0vG+cmTJ9nLsdGjR2P79u3w8fHBsGHDWKK+pk2b4sqVK1o9RMXCbteuXXH9+vXMbFqWo0+kDQkJYbZZsGCBzn2E73FxcbC1tQWlFCdPnsyYE+ZwOBwOJwvgoi5HFogf8h49eoRSpUpBoVBg3759knqnTp1ClSpVQClFsWLFMGvWLK3CbkREBPbs2YOWLVvC3d0dO3bsYGVyEX04PwdhIhcREQFHR0cm2ogzsuvyYEyvsCvm6tWraNu2LSpUqABKKcqXL2+QS2HXrl3L7LJx40a8ePECwDfvHkop/vrrL8TExGjdPyUlBS9fvmQJ5rZs2ZKZp58tiIyMhLu7O8zNzZnIExQUBEB//Nbw8HDUrFkTlFIUKVIEzZo1g7u7O0v8RSnF7NmzM6sZ2QLxeBSWASuVSpiamqJs2bIwNzcHpRQ2NjbYu3cvqysWeuLi4pinqLGxMYyMjNjfZfz48Vp/y9BZvHgx61ObNm3C69evAQCzZ89m2wXbigVd9f67efNmdj0MDQ3V+5uPHz9m15NfHfGzkfgFQbdu3bB48WIcPnwYK1euhJWVFVvR8fTpU8kxtAm7tWvXxtatWyUhgcQrRAwJcbzWli1b4tixY6zdQsI+cfx74OtY3rlzJ+ubTZo00SvsCg4H6uG9DBmxLRITEyUJYQX69+/PbC9+ntcmBp85c4bVFcfP5XA4HA7nV4eLuhyDR32CK7zdnzdvHgBoeDFevHiRCRL6hF2Ax+Li/DxcXV2ZoCuE9+jfvz8r1yXUqAu7QmZxQLN/fvnyBYcOHYJSqUSuXLnQrVs3PHnyJEPak9kIY0+lUuHTp09o0qQJlEolEyHFTJ8+ndlr2LBhePbsmVb7+vn5MS/Vq1evZngbsiN//PGHZLlw165d2dJ0bTYT+tx///0HBwcH1pfF/9zc3Fh9OVwzxeNQGOeUUsyfP5954//zzz8oU6YMK9u9ezfbR91Grq6usLOzg1KpRI0aNbBw4UJWZuiCrtiWT548Qbly5WBkZMTCLAi8f/8eHTp0YNfUBg0aaD0G8DX8jWB3fV66hsyhQ4eYDaZOnSqJ27xjxw5mRyGsSkREhGR/sbCbO3duUEoxcOBAreKaIYWiEtpy4MABibB7/PhxJCYmonr16qhduzaL7aw+Pvft25cuYXft2rWoXbu2bJIhiu20c+dO9OzZE5UrV2b5BQS77969Gw4ODqCUonTp0pKwQOrhGJYvXw6FQoEWLVpoeJxzOBwOh/Mrw0VdjmwYM2YMnJ2dERAQgJw5c+L06dM66+oTdsUP3IY0OeFkHU+ePEGhQoVgZGSE1atXY/To0Swm5F9//cXqpVfYdXV11flbKSkp+Pfff3H48GHJxP1XRmyXu3fv4tGjR8ifPz+6d++OlJQUjfAVjx49wtChQyXxCjds2IB3794hNTUVT548gbe3NyuXW5I0gcePH7PwC507d2af27dvz7zt9Am7d+7cweTJk1GvXj2UKFEC3bt3x9q1a1k9Qxcg1fH09GR9as+ePZL2T5o0CZRKY7yLhV1xGBUAuH//Pm7duiXxmjR0e4pfqn78+BEhISEwNjaWvCQQSE1Nxd69e1GtWjVmT09PT1y4cIHVCQ0NxdKlS1n5hAkTJPvLhSdPnqBhw4aglGLixImSst27dzP7dOjQAfnz5welFPXq1dMp7F66dAlNmzaVhQApfgbcv3+/RNjdt28f8ufPjwEDBug9RnqFXeG3DN2u4uvYjBkzYGpqCmNjY5iYmGgkKPzy5QumTZvGwqEVLFgQ27Ztk/xdkpOTWdgfSg0zySGHw+Fw5A0XdTmyYOXKlSyOY/Xq1WFiYoLHjx/r3Se9wi6H8zMICQlhyTtu3LiBwYMH/7Cw6+TklCnnnN0YNGgQatSoAQ8PD5iYmGDOnDk66966dYvF3KWUImfOnChdujTq168Pe3t7tl28rN3Qx736S6rk5GQEBwfj6tWriImJwbhx49jkuUOHDjqFXbGHlCBACIK5gKELkOrcv3+fCYwbN26UlE2ePJn1tylTpqBt27bse2BgIKunLuyKkdMLxlGjRsHFxQULFiwApRQBAQFa6yUlJWHr1q1MsKSUomTJkmjUqBGaN2+OIkWKaF3WLre+GRAQAHNzc/To0YOFrwCkHsxTpkxBamoq1q1bxzxx69Spo1PYFTB0ARLQLezWrVsXVlZW7D6kL4np9wq7hoq2ZMaUUixcuBC3bt3SWjc5ORmurq4oWrSo5EXtyJEjMWXKFHTv3p1tF7+0MHRbcjgcDkc+cFGXIwtOnDiBFi1awNTUFDly5ECuXLlw/vx5APoncGJht0SJEpg5c6bBxYPjZC26RJqbN29iyJAh3yXsXrlyBdu3b2ff5TRpuXDhApu4VaxYEaampli8eDEA3ZPpd+/ewcvLC9bW1kyoEJYZV6hQAR4eHqyuoQs94n4YExPDrnNiUebhw4dwcXFJU9hVF3TVPaXl1C8F1qxZw7zo4+Li2PYZM2ZoCLi7du1isZzVRUs52k6MEPvWzMwMjRo1Qq5cuRAcHAxA6skr7oPnzp1jsYjFntAKhQJNmjTB6tWr2X6GPs610adPH1BKJbGcjx07xkKuiIWw8PBwdOrUiZX9/vvvGsKuHNEl7ArhKtIjbouF3ebNm+PixYuyHe/iWNnifglI71ViYXf58uVo2rSpRrgfhUIBCwsLTJs2je0nx3HO4XA4HMOFi7oc2XDu3Dm0bNmSxXjs3LkzK9PngXfx4kXUrl0blH7NUn7kyJHMOF2OAaLezz5+/KghOIq//4iwm95yQ2TTpk3MVsISWAF9k+ObN2/i6NGjmDBhAqZOnYo9e/ZIMtsbui3F7du1axf69OmDpk2bak0GFR4erlPYTU5OZnY+cuQIGjRogJcvX2ZOI7I5S5cuhYmJCQ4ePMi2icMxbNu2jW1PSEhAv379JMKEOBSD3HFycpLEedblka8+5g8cOIANGzZgxIgRmDZtGo4dO4bnz5+zckMf57qIj4/H3LlzmfAo9iofOnSoxssYITSNIJA3bNgQjx49yrLzzy6kpqYyG+3du5eN3WLFisHHxyddwu7+/fthaWkJSilGjx6d0aecLbl16xaqVKkChUKB9evXp1lfnBfj0aNHWLRoETp06IBq1aqhevXqmDVrFvbv38/qy3WcczgcDsdw4aIux+ART+zOnj2L1q1bw8zMTCOGXloeu3Z2dhgxYkSGnivHcBH3r8DAQLi7u8Pe3h4ODg5wcnLC/PnzWXZnMf+LsGuoaEsAJ7BhwwZmq5w5c2LNmjU690uPF5Shh1wQ96E5c+bAzMwMCoUC+fPn1wgTIKBN2BVnuf/nn394/EI1EhIScPHiRfb9ypUrKFeuHCilzKMc+Pb3uHbtGnLmzAkrKytmS7EXvhwRj/MePXowL7zq1auz0DXaSM8YlqtHpDbb7Nq1CxYWFqhSpQru3r3Ltgt989atWyhQoAAaNGiAIkWKgNKvCSflhLi/pKamsutfUlKSVmG3adOm+OeffzSS7Wpj586daNy4sSxCV2jD398flFI4ODggPDw8Xfuoj9+kpCR8/PiRJfUUMPT7OYfD4XDkCRd1OQaDvkmZ+EH67NmzaNWqFYyNjWFpaYnJkyezMn0i2ZMnT9JVj8NRR9xfJk+eDGNjY+ZlJv5XrVo1rbH09Am76ZkkGhJi2yQmJjIhXDwB3rBhA1vGWrduXezZs4eVyVW80Yau+IUzZszQK5IBX5PNubi4sORpv//+O/bu3Ytly5ax47i4uGR0E35ZBG/HOnXq4NGjRxr98sGDB7C0tES7du3QrVs3UEoxePDgLDrb7IP4etezZ0+2gmbs2LHpFoAAeV4H1IVIXQiCee/evbWWBwcHg1IKNzc3+Pn5oXXr1rISIMV2DAkJwbRp01CvXj0mgIvL9+3bJ1k5cuzYse+6Z8vRrv3799dYTacPbeEY5Di+ORwOhyNfjAiHYwCkpqYSpVJJCCEkJSWFPH36lCQmJhIrKytStGhRYmT0ras3aNCAUEoJAHLq1Cni6elJCCFk7ty5RKlUSo5FCCEACKWUlChRghBCiEqlkpRzOPoAwPqLm5sbWbJkCSGEkEmTJhEHBwdibW1NLly4QHbu3ElCQ0OJk5MTWbBgAenQoQPbz9HRkYwaNYoQQsj27dvJli1bCADi7e0t6duGjnhs7tq1i+zdu5fcu3eP7N+/nxQrVoyoVCqiUCjIoEGDiEKhICNGjCAXL14kq1atIgqFgnTo0IGNfUppFrcm61EoFIQQQqZMmUKWLVtGCCHE19eXdO3alZiYmBBCvl5PhT6Gry+CiUKhIHZ2dmTkyJHE1NSU+Pj4kJCQENKzZ0/y+fNnQggh48ePJx4eHoQQonFNNUT09SlxmWCLoKAgQgghdnZ2xM7OTmOfFy9ekMTERFK0aFHSuXNnUq9ePTJ69OiMa8AvgpGREeuTO3bsIAqFguzYsYOsW7eOmJubk0GDBmm1pzpyGf/ividuszD2tfVbbfUJIez6ev36dULI177bo0cP0r17d0IpJV++fCHGxsYZ1ZRsgdheQUFBxNnZmURGRhJCCFm6dClZv3695B7ToUMHsm/fPtKxY0dy7NgxdpzGjRun695t6PbURnx8/HfVF/pyXFwcsbKyYv2Uw+FwOBzZkCVSMofzExF7QXp5eaFr164wMzODsbExChcujLp16+LgwYOIioqS7CfE2DU2NkauXLkkHrt8iRbnZ7N69WrmsbNv3z6N8vXr17N4z7pi6d28eRPDhg1jXqjiOJyGjnicz5gxA6ampjA2NoaJiYlkib947G7atAkmJiZs+avY7tyT5yt+fn7MRv7+/pKy9GSyj4qKgp+fHxwdHZE7d27Uq1cPy5cv13kMQ0TcxoSEBERHR2vcb9TvKaNHjwalFD179sTHjx+ZbYV68+bN0xpyQW6e+boQ20FI9GVqaopJkyZ9l8euISO+xp0+fRozZsxAp06d0LdvX/j7+7MEZ+KYpCqVCm5ubqCUonr16rh06ZJk3N+5cwfFixdHrly5cPbs2cxtUBYjtue2bdvY/XzAgAE4efKkRnx8XcnTfsRjV07Mnj0blFLY29vj1q1b6dpn5cqVsLOz07jucjgcDocjB7ioy/mlEU+Ux48fz5J3WFpaokSJEihYsCAopbCxscGoUaNw584dyf76hF05iBGczCEmJgYtW7aEUqlkMV5VKhXrY8HBwciZMycopejVq5fG/uLJ4c2bN9GtWzeMGzcuc04+G6ArTMDChQu1Tvq4sPsNbXGaxYwePRpKpRKDBg3C58+foVKpJCJPYmIipk2bht69e6NixYqYN28eLl++rHGcjx8/4tGjR3j9+jXbJodrqLiNy5YtQ/v27VGoUCEUKVIErq6uktAf4roeHh5MiNy5cydLNvflyxcEBgaCUor8+fNL4vBypHBhVzfia5uvry8sLCygUCjYtTNv3ryoUaMGrl69CkCa5OvmzZss1E/Dhg2xaNEiHDhwAJ6enrC1tQWlFP3795fty+/Dhw8zO86ePVvr8n+BtIRdOVwjvxchNI2JiQnWrVsHQP+9+sOHDxg0aBAopfDz88us0+RwOBwOJ9vARV2OQTBlyhRJYp4rV64gKioKd+/exZ9//gmlUgkrKys0b94cT58+lTwgioXdPHnySIRdDudncOHCBVBKYWtry14sCJM/saArjmGo7hUp/i72RpHTpHDx4sVsnO/du1dSpj6Z1ifsijNhGzLjx4+Hl5cX4uLitJa/e/cO9vb2TCAHwLzNoqOjsWbNGtSpU4clpBKSz7Vu3Voi7GoTd+QgmGt72aAeK9vW1hZz5sxh9cTjuEOHDky8GDhwIMaOHYu//vqL7Tt37txMbc+viD5h99GjR1l4ZtmD3bt3s/5Ur149dOzYEfb29sidOzcopbCysmIvDlJSUtj95MCBA+yaKSSWFVaSNGvWjNldbsJuZGQkWrduDUppul+s6hJ2W7dujQMHDsjOhulBsHGOHDlw6tQpSZn6M8/WrVtBKUXFihU1HDc4HA6Hw5EDXNTl/PJs376dCQ7qQg8AHDt2jE1G+vbty7aLH7TPnz+PNm3awNjYGJRS2Yg+nJ+PNq8dHx8fUErRokULAN/6ni5BVxDWEhMTsX79euZtqS6UyUE4E7h16xaqVKkChUKB9evXp2sfXcJukyZNsHPnzow61WzBiBEjQClF+fLl4eXlxbKzi4mNjUWFChVAKUWfPn0AfLXZjRs30KJFC+TKlQuUUhQtWhSDBg3C77//DkopLC0tsWjRIgDy6oO6mD9/PhNq3NzcsHjxYri5ucHW1paJvBMnTmT1hfF98+ZNtGnThq0wEYvC48ePZ/W56KMfbcKuubk5Jk2ahLCwsCw8s6wlIiIClSpVAqUUs2bNQkJCAgDg/fv38PT0RI0aNUAphbGxsUTYFfrbmTNnUL58eRQuXBiUUjg4OGDAgAHM3nIMHxAaGor8+fPDxsaGJZNMzzVQl7Dr7OycYef6KyLY6ciRI6hatSoTdvfv38/6r0BqaioCAgIkDh0cDofD4cgRLupyfnmGDh0KIyMjzJw5E4B0Wfu5c+eYMCFe1q5tknzu3DnUqFEDY8aMyZwT5xgcYg+Sd+/esc/r1q0DpRR169ZlE+Hz58+n6aG7dOlSUEoxderUTDj77I2/vz8TFr5nabV4rG/evJkJuytXrsyI08w2PHz4kIkxCxYs0CgXJs9LlixhL72aNm2Kli1bsu+Ojo6YNm0aoqOj2X6NGjUCpRT169fXiCEpFwTbqVQqREREMG9n9VjZR48eRdeuXZlgO2HCBI1jxMXFYcyYMWjQoAHy5s2LXr16YfXq1ayenDzx/xfEAmO/fv30xi83VNSfa/777z+YmppiyJAhGnU+fvyIPXv2ME98ExMTrR67UVFRePToEU6dOoXIyEjWb+Uo6ALAnDlzQClFlSpV0gxtA0jFXHGIi127dqF69epa45RzvsYmX716NRwdHZn3/ZAhQ7BhwwbcuHEDPj4+LC45pRR///0325e/BONwOByO3OCiLueX5sWLFyz225EjRwBoX9YueKEB37ykhP/FkxOxWMQn05zvQTyRGDduHGrVqoWnT58CAC5dugQzMzPkypULZ86c0emhK+6LT548QdOmTUEpxYEDBzKvIdkMYRLcv39/UErRuXPndO0n/nuIx7KnpyfGjh37U88xuyH0o/DwcEyfPp1tv3jxImJjYyV1b9y4gSFDhkjibVJK8eeff+L69evMO0rw9BVil9etW5fFgZUT6veFy5cvM09IAJKYxADw77//omfPnlqFXbGgk5KSgpiYGL2/xdGP+PrZrl07dOvWLQvPJuvw9fXF6dOn4efnB0opDh48CEDTo/Tz5896hV1d4picRbPJkyeDUopatWp9lx0+fPgA4OuYV/87yFUgT4u4uDhs3boV9erVk6xiyJs3L7tPKZVKiaDLr5kcDofDkSNc1OX80oSHhyNHjhwoVKgQXrx4wbantaz9y5cvcHZ2xoMHDwDoj8fJ4XwPM2fOZEsGN2zYgM+fP+PZs2eoXr06KKVo27YtzM3NNV42qE/sli9fDoVCgebNm0v6ttwQJsB//PHHd4m6AoKIqc0jypAngOr9qX379sifPz+2bNmiEWM3IiICO3bsQJcuXTB9+nT4+vpKyoW/QXx8PDp16gSFQoF58+ZlbAOyCbruBd27d4ebmxuuXbsGSikOHTokKRcLN/qEXV3ezjysxY+hTSAz5HGuzt69e5nw5ezsjCJFirDkhdr6lD5hlz8HabJp0yYYGRmhZMmSuHbtGoC0x+qJEydQpkwZ3L9/P131Od9ISkrC8+fPMXz4cFSrVg2UUlhbW8PS0hJDhgyBv78/qyuncc7hcDgcjhgu6nJ+aV68eIH8+fMjf/78uH37NgDg7NmzaXpBCslDqlSpItslxJyfz7lz52BlZQVKKYKCgvDx40dWtmLFCoknZKdOnVhZfHy85DhBQUGsnre3d2adfrZm9uzZoJTC3t4et27dStc+K1euhJ2dHUssJ8fJtEqlwtu3b5mg6OjoCB8fH63J09LyINu2bRsopShQoAD++eefDD3vrEbcPnVxy9fXl43P2rVrw9raGpGRkQCkNkyvsMvFiJ+L+pJ3OXHixAk4ODhI4jQfPXpU7z6fPn3C3r17mbBramr6XfFi5cSBAwfY2BfiigO67ZScnMxCNsyePTuzTtMgef/+Pe7cuYOIiAg8e/ZMUia3cc7hcDgcjhgF4XB+YXLlykUsLCzI27dvycaNG8m///5L2rVrRxITE4mTkxPZtm0bIYSQlJQUYmRkRAgh5N27d2T//v3E2NiY9O/fn5iYmGRlEzi/MKmpqZLv9+7dIx8+fCBeXl6kc+fOxMzMjAAghBAyZswYMnz4cFa3ePHi5PLly4QQQnLmzEkIIeTly5fE29ub/PHHH4QQQiZPnkz69+9PCCHsOHKlaNGihBBCnjx5Qi5evEgI0W+T+Ph4cvPmTfLkyRNy9uxZQgghlNKMP9FsSN68ecmDBw9IsWLFyO3bt8nChQvJ3r17yYcPHyT1xPZMTU1l10xCCAkMDCR9+/YlhHztyy1atMick88CevXqRdq0aUNWr15NCCFEoZA+KpUrV44MGjSIEELIpUuXSGxsLDl58qTGcSilzKa1a9cmY8aMIX/++SdRKpVk0aJFZMKECYQQQpRKZUY2R3aIx7n6387QadiwIVm9ejWpWLEiSU1NJSYmJuTSpUskKSlJ5z45cuQgrVq1Im5ubqROnTokOTmZ1KlTh9y+fVuW10xt9xWVSkUIIaRdu3akd+/ehBBCJkyYQIKCgggh3/qcUE84xvXr14mnpycpWLAgqV+/foafuyEi2DJ37tykfPnyxNbWlhQrVoxtByC7cc7hcDgcjoSsUpM5nP8VwTNi+fLlMDMzg4WFBUvw069fP1ZPfdn1xo0bQSlFhQoV2PI5Dic96PLCmzt3Lnx9feHs7Axra2vcvXtXa93nz59jwIABzNOnZMmS6N69O6ZPn45x48ahfv36rMzNzY3tzz35vtK6dWsW2uLUqVOSMnUbbd26FZRSVKxYEXfu3MnM08x2CB63jx8/RpEiRUApRfny5XV67Iq5du0aZs2axfqlq6srKzNE76jLly+jTJkyzNPx/PnzrEzc3hs3bkjGsvieo94X1T12nZycmBfl3r17M64xHFny5csXnDlzBpUrVwalFPnz58fx48fT3O/z58/Yt28fypYtCzs7O1nFelX3tP306RNiY2MlY1kY//v370fNmjVZuIqdO3dqPebt27dRsmRJUEoxfPhwg7xecjgcDofDyXq4qMvJtuh7ABY/aF++fJnFK6WUokaNGqxMvPwdAPbs2cPqrVy58uefNMcgERKeAZqTvwkTJoBSiiZNmqBixYooUqSI3pAe7969w6RJk0Ap1UhORSmFnZ0dPDw8WH0u6H6z+ZEjR1C1alUm7O7fv58l8hJITU1FQEAAs+eqVauy4pSzBPE1MykpSSLKfK+w++rVK7i7u8POzg5KpRImJiaYM2cOKzfkfrl7926ULVsW48aN0ygT2/TGjRsYNGgQ62uTJ09mZWkJu61atcLo0aMz4Ow5ckGlUrF+pf68lJKSgjNnzrA4pDY2Njh79myax/z06RPOnTvH+q8chF2x7c6dO4c5c+agatWqKF++PFq0aIFhw4YhIiKCJYtMTk7GkiVLUK5cOTb2J0yYgICAALx69QpnzpzBkiVLUKxYMRZHX7AnF3Y5HA6Hw+H8bCgg8zW9nGxJamoqW5J67Ngx8uLFC/Lu3TtSqlQp0qZNG42QCb6+vmT06NEkLi6OFC9enHTv3p1MnDiRmJmZETMzM3Lz5k1y6tQp4uLiQgj5umxuwYIFhJCvy+X40i2OLv78809iZGREJk2aRCpVqqRR7uHhQZYsWULev39PjI2NSf78+UlISAixsbHR27f2799PQkNDybFjx4iJiQlRKpWkR48epFKlSqRmzZqEEOk44BCSmJhIfHx8iJeXF7l9+zYxMTEh/fr1IzVq1CA1a9Yk169fJ1evXiWrVq0ihBAyZcoUMnv2bEKI4Y9zcV85cuQICQ4OJqVKlSIdOnQg+fLlk9R58uQJqV+/PomKiiK//fYbmThxIunUqROxtLRkx/v3339J//79yZMnT0izZs1Ir1692LJjQ+2XX758IcbGxoQQQm7evEkqVqxICCHE1dWVFCxYkIVLEIfzuXnzJlm1ahXZuHEjIYSQv//+m8yaNYsQomknAGyZdkREBClRooTWeoaG0G5x+8UY+tj8meiyoTYbp6SkkAsXLhBXV1cSGhpKChYsSHbu3EkaNGiQrt8y9H5JiNSefn5+ZOTIkSQuLo4AYGM8JSWFlCtXjowaNYp07NiRFClShCQlJZFNmzYRf39/EhwczI5XtGhREhkZSRQKBVGpVKRdu3YkKCiIGBkZycKeHA6Hw+FwsoCsUpM5HF2IPRkmTJgACwsL5g2hVCpRq1YtBAcHIzExUbLfhg0bYGNjw5a1Ojg4oFq1amjbti0KFSrEjjFx4kS2jyF7m3H+d/z9/Vm/6dGjB168eMHKxP101apVzPuRUoqpU6eyMnXPXnVPHcGr99OnT3rrcb4SFxeHrVu3ol69euyaIGR7F18n/v77b7aPoY9zcfsWLlyIggULglKK0qVL49KlS1rrpsdj9+DBgzhw4AAiIiLYNkPsl9evX2ef1T0T586dyzwdV69erbXejRs3MGTIEK3jX5/HLmCY9hQjbn9CQgJu376N0NBQXL9+HTExMaxMX0IudRvJNXmX2A537tzBnj17MGDAAAwePBguLi44e/YsXr16JdnnRz125Yafnx8bv4MGDcKmTZtw+vRpbNmyBRUrVgSlFMWLF4ezszOeP38O4KttL1++DGdnZ+TLlw8KhYKtvmndujXmzp0rK49nDofD4XA4WQMXdTnZlqlTp7Il6pUqVUKpUqWYcFOuXDls2bIF7969k+yzd+9edO3aFTlz5tRY1l6/fn2sWbOG1TV0oYfzcxBCJYwaNUqjTDxRW7lyJWxtbUEpRZEiRbB9+3ZWpkuE0Ld8lqObpKQkPH/+HMOHD2dihbW1NSwtLTFkyBD4+/uzuoY+zsXtc3NzY9dMV1dX7N69W+8+3xtj1xDFtG7duqF69eo4fPgw2yZu5/bt21GrVi0YGxvDxsZGEs7jR4VduSBut6enJ1q0aCF5EVOrVi3MnDlT7zHENr548aLe0DaGjLhPBgQEwN7eHmZmZpJnHKVSiS5dumDXrl2Sfbmwq58zZ84gT548oJRKQswI3L17lz171qlTRyOsFwCEhYXhv//+w8WLF/Hvv/9K+r5cxz+Hw+FwOJzMgYu6nGzJ6dOnYW5uDkopdu7ciVevXiEiIgIHDx5EqVKlQClFqVKlsG7dOg1h99WrV7hy5Qrmz5+P8ePHY/bs2fjnn38k3mb8IZujj27duqFz587s+5EjR9hnHx8fXL16lX0Xiw6enp4oXLgwFAoFatasKRHVDFEQyw68f/8ed+7cQUREBJ49eyYpM3ShXNynBEGXUgpvb298+PCBlYmvd8I+QgJJdWF369ataSZPMxT++ecfZrM2bdpIhF2xzYKCglCrVi0oFAou7KYT8dgbP348e9mQO3du1KhRA5aWlsxOvXr1Qnh4uN7j9ejRAyVLloSPj4/Bj2t9+Pr6MrtVqlQJbdq0QZ06dZg3qVKpRKFCheDp6SnZT13YLVy4MM6dO5dFrcgeCNdCIS7+4MGDWZlwfXzx4gVq167Nkuu+fftWsq/QF/W9uOVwOBwOh8PJSLioy8mWrFixApRSbNmyRaMsMjISZcuW1SnspjXh4w/ZHH389ddfbNJ8//59AN/6TOfOndnk78aNG2wfsbCzatUq2NjYQKFQoFatWlzYzSDSmkTLydYbNmxgfVbdO1ffsl9dwu7atWtZUiBDZ/Xq1TA2NgalFK1atZIIu2Lb7d69+38WduXIlClTmC02btyI27dvA/ia4HTjxo0Sr131lzICgYGB7Bjt2rXTSI4oFw4fPszCS82YMQMvX74E8FWwjYuLg7OzMwoUKMASSa5du1ayvyDsihPLikOPyJHY2FiULFkSlFL4+flBpVKx8fzq1StmK0dHR/acKVw3BXhoBQ6Hw+FwOFkJF3U52ZJBgwahQIECiIiIkIi0grfTq1ev9Aq7HM6PMHbsWFBKkTNnTpw/f16jfMyYMWwyPGTIEC7scrIUlUqFT58+sZcNgoAoDush4O3tjVmzZmHChAkSz3NBoHjy5AkKFy6scwmyoSH2nF21ahUTF3+WsDts2DB2rTh48GAGtyZ7smfPHpiamoJSij179gCQvnQNDg5mMfPbtm2r8zjR0dFwd3dn9jx69GhGn3q2IjU1FXFxcWycjxkzRlIu7surV69GuXLlWEztQ4cOadQ9e/YsihcvjmLFislekAwLC4OVlRVsbGzw9OlTtl0s6Do4OGgVdNevX8/CgfD7OofD4XA4nKyCi7qcLEV9SarwwDxy5EhUqFBB6z5iLwou7HJ+FseOHUPu3LlhZmaGEydOSMri4+PZ52nTpv3Pwq6clw9zfi4PHjxgnqaBgYEAvl1HX79+jZ07d6J58+YaMcbFy7OF+g8fPsSUKVMyvxFZhHqyQyHJUcuWLX+KsNutWzcMHTo0g1uRfRFCgri5uQH4KnwJNg8ODmax73v37s32EYtj4r/Pw4cP0alTJ1BKWWx8QxTSdLUpMjIS1tbWoJSyvimuK36WWrFiBXLkyAETExOMHDkSgNSWX758QWhoKNtHDqFB1O+5wlh9/Pgx8ubNi0KFCuHevXsAgKioKImgKyT0E4/v4OBgUEpRo0YNg+yHHA6Hw+Fwfh24qMvJMsQTCR8fHzg7O6Ndu3YYO3YsRo0aBTs7O7x48ULrhEOXsLthwwYu7HJ+iJUrV7JlwG/evGHbR48eDRcXF0lWcSGJ3/cIu3Xq1NGZuIrD+VFevHiBIkWKwMzMDF5eXmz7/fv30aNHDxQsWBCUUlhaWqJy5cooU6YM67tiLz51jz05ePCpCz1r166FiYkJKKVo0aKFTvukV9h98eKF1u1y4OXLlyxxZEBAAACkKeh++vQJAFjcUkD6nLBmzRpQSlGzZk1JzOhfnaNHj+Ly5ct665w/fx6UUhQqVIj1K3UxUdyfBw4cCEopjI2NWRghbRiaoKs+plNSUiTbQkNDJeVv3rxBoUKF2AqFmJgY1KhRQ8NDVzx+4+PjWZxoFxeXDGwNh8PhcDgcTtpwUZeTJYgfssUJfsT/FAoFjh8/rlFfQJuwa2dnh2XLlmnNTszh6GPx4sUs+UxYWBgAwNnZmfXHR48eSSbR3yPsCvFKS5UqJfsYhpyfh0qlQlRUFEuSVLduXQwdOhSTJk1C7ty5WZ8bOXIkHj9+jKSkJBw8eBBVqlQBpRTjx4/P6iZkGWIx68qVKwgMDISfnx9q1qzJQga0bt36h4Rd9ZibcvTke//+PUqXLo28efPi4cOHbLsuQVdsMxcXFyxfvpx9F9uvRo0aqF+/vsHYdP78+aCUom/fvrh06ZLOeqdOnUpXOA+hX1+/fh02NjYSUd1QbKYL4Tnx8ePHWL16Ndsu2GTLli2glDLvZcEe06ZNg4mJCcqWLQs7OzsWQ1d4uSuMe+H4J0+eRP78+WFra8vCNBm6bTkcDofD4WRfuKjLyVLmzp3LJiqdO3fGkCFDUKJECSZI2NjY4M6dOwDSL+xOnz49M5vAMRBCQkJYX3RycoKTkxPzdNq/fz+rJxaDvkfYpZRi1KhRmdMYjkEhvvZpS2B24sQJJkRSSll82Hbt2uHkyZOIi4tjdVUqFRo1agRKKXr16sW2yQnxGJ4xYwby5cvHbCfEeBX+tWnTJl2hGIoUKSIRduWCNk9PlUqFp0+fsqRdvr6+AIALFy5oFXTFNt2zZw8opahcuTJb9i7+nSdPnrDPhhDGpl+/fqyvzZ8/X1ImHpfPnz9H6dKlYWpqCnd39zQTGcbGxqJ48eIsQZ1cePnyJVudsGjRIrZ98+bNzM4LFiyQ7HPkyBHmrUspha2tLbtmJiYmSurev38fJUqUAKUUzs7Osrt2cjgcDofDyX5wUZeTqYgfgB88eICSJUtCqVRi7969rCwyMhKTJk1C6dKlQSlFhQoVcPfuXQD6hd3o6GjMnDkzE1rBMVT8/Pw0PMYFTz1tCfuA9Au7Z8+eZZ8NQYzgZA7ivnb48GG4uLjAx8cHCQkJAL5dU8+cOYNevXrBwcEBffr0kQgaQr2UlBRERUUxIXLLli2Z15BsiLCEmlKKZcuW4dSpU4iKisLmzZvRv39/VpZW8rQ6deqwuuJxbuiIr2OnT5/G58+fJf21d+/eoJRi2LBhCAwMTFPQjYuLYwnmPDw89P72rx42QPws1Lt3b9SqVYt9F4f/EeqlpqaiVatWoJSicOHCLFyDrntJeHg4i8Erp7A/586dQ4MGDWBkZARKKby8vLBr1y6tgq74b7Bo0SJWp169evDz85Mc9/Xr1zh+/DhKlizJvPgN6eUCh8PhcDicXxcu6nIyDfHkTaVS4fz581AoFCzTujhje0xMDBYtWvTdwq6u7xyOPsQCQfPmzaFQKKBQKFC/fn1ERUVp7XPpFXbVl2L/6mIEJ/MQ95WFCxcyD7Q8efLgv//+AyC9bqakpLC4pALq18JNmzaBUgp7e/s043gaMsJSbEopgoKCtNZZuHAhq5NWKIZSpUrJ1hO/a9euMDY2RlRUFIBvYpkQ0iZnzpwwMzMDpRR9+vRh+6n3TeFvUqZMGb2hCAwFbfeCdevWoXv37rh69SrbJtjpxo0bKFeuHCilKFmypCSshYBwrzp48CBy5syJKlWqIDIyMoNakD05fvw42rdvr/GCVvyiSyyWC4jv40qlEq1bt8aoUaMwY8YMNGzYEHnz5gWlFM2bN2d/E34/53A4HA6Hk9VwUZeT6bi6umLevHmYO3culEolTp8+LSkXHrbfvXv3XcIuh/O/4uLiAkop8/KhlKJr166s36mjS9gdNmyYRNjlcL4Xcd8Sxx13c3PTKUKqoy6a7d69W6vAIUecnZ2hVCrRs2dPJCUlsfuOWCQHgBUrVkhCMegSdsWxsuUk9Dx9+pSJXc7OzkhKSpKUN2/enNmvVq1aiI+PB6D5sisoKIjVW7p0aaadf1YjfpY5d+4cs8HAgQPZixvga79MSEjAypUrWVgFW1tbHD9+XJJYDgBu377NPEpHjx4tmxAB4nZev34dVatWZS9oW7duzcr0vWhdsWIF7O3tWcJE8b/ixYtj2LBhbNxz5wEOh8PhcDjZAS7qcjIVwXOncOHCaN26NQoWLIjHjx8DkE5uuLDLyWw+fvyIoUOHwszMDIcOHZKEYvjzzz9x7949rfvpEna7devGspRzON+DWJwQC7re3t5MFAPSLyo8ePAAS5YsYccRJ0iT43U0MTERjo6OoJRi3LhxWuuI7eLu7s5s17JlS0koBnWBSG72TEhIwKBBg0ApRYMGDVjoAEHcvX//PqpXr848zCdPnowjR46w/UNCQiRL393c3FiZodtSm9g6ePBgUEqRI0cO9O/fXyLsAkBUVBRmzJjB4roWKFAAf/75Jzw9PeHt7Y3JkyejaNGioJSiRYsW7BohN2FXWygl8Yss9b4lvo//+++/8Pb2Rps2bdC4cWO0bdsWs2bNwtmzZ9l+cnpxw+FwOBwOJ3vDRV1OppKcnIwGDRqwBFSUUo3YZQK6hN2KFSsyYVcuExVO5vD+/Xs8ePCAfd+wYcMPC7tDhw7N8PPlGDbi/qfunatP0BWEh7i4OMyYMQPNmjVjxxEnkpSDMCFuo3C/iI+PR8WKFZlXvS4EOz579gzVqlWTCLtij125c/78eWabuXPnSspUKhVCQkJQr149UEphamoKhUKBWrVqoXbt2rC0tIRCoQClFO7u7mw/Q+qb2uKxi7cJ8bEFRo4cqVfYffXqFTZu3IgKFSpoCJfCv86dO8s2REBKSgrzsO/Tpw86d+7M7CKO1awu7Kp/T0pKQkpKikZSOkN/2cDhcDgcDufXgou6nExDvGStbt26bJl7586dER4ernUfdWHX3t6eeae8fPky086dI182btz43cLuwYMH2Wf+4oHzI3z58gV//PEHFAoFpk6dCuCrmCDuTyqVCps3b8bUqVMxZcoUyQuyz58/459//mF9t06dOli/fj0rl4PQI26jp6cnDh48yLYNHz6ciYviFznaECepsrS0BKUU1atXx507dzL0/H8FhP44evRoZhdt9oyJiUGPHj1Y6ADxv1atWsHLy4vVNaS+KQiAkZGRePfuHQBIREIvLy+YmZnh0aNHkv3SEnZTUlIQHR2NIUOGoHnz5rC0tIS1tTV69eqF5cuXMxvKNUTA58+fcfPmTQDAyZMnJTF20yvsqns583s5h8PhcDic7IgR4XAyCSMjI5KSkkKMjIzI6dOnSePGjcnFixfJuXPnSEBAAOnfvz+xsbGR7EMpJQBInjx5yKBBgwghhMyePZu0a9eOFCxYMCuawZEZAwcOJIQQMnjwYBIYGEgIIWTWrFmkXLlyknpKpZKkpqYSpVJJ2rZtSwghrL9zON/L06dPSVBQECGEsL6mUqmIkZERefPmDTl16hTZuHEjOXnypGS/sLAwMn36dGJqakpatGhBNm7cSOLj40mzZs1IhQoV2HGUSmXmNiiTAcDaOHHiRLJo0SLStGlTUrx4ceLo6EjKli1LAJD//vuPnDlzhpQpU4YAIJRSjWMpFApSvHhxUrFiRdKlSxcyY8YMUr16dVK+fPnMbla2Q7BXnTp1yKpVq8j169fJzZs3JfYEQKytrYmfnx8JDQ0ld+/eJREREcTCwoJUr16dODg4kDx58hBCCLuGGgoKhYI8f/6c2NrakgIFCpBbt26R/PnzE0II8fHxIcOHDyeEEHLkyBEycuRI1v5Vq1YRQghZs2YN8ff3J4QQMnr0aFK1alV2bBsbG7Ju3TpCCCGvX78mlFJ2bEK+2lKu9x9TU1Pi6OhICCGkSZMmBAAhhJCDBw+SiRMnEkIIcXNzIwqFgqhUKqJQKJjtP3z4QCwtLYmRkZHkmqDt2sDhcDgcDoeT5WSdnswxVHR5NQjfBS+VL1++oH79+szzdtGiRYiOjtZ7zLdv3+LEiRNsO18Gx8ks0uuxy+H8DKKiolC0aFFYWlrCx8eHXevu3buHbt26oWDBgqCUwsrKCr///juLsUkpxfbt23UeV27eZlu2bGF28fLykiSVatOmDQsFdOzYMcl+4nvLx48fUbduXRQuXBjA13AD2uoZIt/jNfvHH3+w2PfPnz+XlKXHTobYN1UqFXx8fJArVy5QSlG+fHkA0qSFYs9RQGpzfR67uv42hmjHH0VsixMnTuj02BWeS589e4ZSpUqhf//+mX6uHA6Hw+FwOD+CIqtFZY5hkZqayrwZUlJSyMOHD0lYWBh5/PgxiY+PJ4R89aBITk4mRkZG5NSpU6RBgwbkzZs3xMPDg2zbto1ER0drHFfw9smbNy9p2rQp+y2FgndhTuYwcOBAsmHDBkIIIYGBgWTatGnk/v37WXxWHEPF3Nyc5M6dm8THx5MVK1aQ0aNHExcXF/L777+TgIAAkitXLjJixAhy5coVcvHiRbJ06VJStmxZQgght2/f1nlcQ/c2S01NlXw/fvw4IYSQXbt2kaFDh5K8efMyr72RI0eSqlWrkpSUFNK2bVuyb98+kpSURAghknvL/v37SUhICKlVqxYhhJC6deuy3zK0e1BKSgr7LPboPn/+vKSe2M7C5549e5J8+fKR169fk5CQEEmZup3wNfyXZJsh9k1KKWnTpg3x8PAgJUqUIPfu3SNFixYlXbt2JYQQMmfOHOLm5kYIIcwewqoPQghZtWoVGTFiBElKSiL+/v7E09OThIaGsnrqNhR+k/MV4dmREEKaNm1Kxo4dS9q1a0cI+erBv3DhQkLI1+fS58+fkyZNmpDHjx+TiIgIrbblcDgcDofDyXZknZ7MMTTEXiNr1qxhHhGmpqbIkSMHGjVqhFWrVmnU//LlCxo2bAhKKfLnzw8PDw9ERUVl+vlzOOlB3WP31q1bWX1KHAND8C4LDQ1FgQIFNGKQtmvXDqdPn0ZcXJxkv5YtW7J+CRi+F6k64vZeuHABz549Q4ECBdCiRQvEx8dreDAmJiZizZo1qFSpEovx7uLigp07d+LDhw8IDg7GqlWrmN03bNiQ2U3KNNzc3PDmzRsAmnFYBw4cCEopunXrhqVLl+LTp0+ScsGur169QpUqVUApRevWrTPnxH8RYmJisGPHDhQoUIAlidUVK1sgvR67nLRR99jt0KEDG9d//fUXpk+fzuI9N2nSRCOeLofD4XA4HE52hYu6nJ+CeDLt5uYGSikUCgXMzMzg4OCAHDlysAfoUaNGITIyUrKfNmFXVygGDier2bRpE+vPmzZtyurT4fyC6BILhGuiIOjcvXsXnTt3Ru3atdG3b18sXbpU4zhfvnxBVFQUatSoAUopNm/enLEnn83p0qULKKXYunUrihQpgiFDhuisGx8fj61bt7JQQEZGRqCUolSpUkx8o5RiwoQJbB9DE3qEJGfly5eXhKcAgODgYNSqVUvyUqF69epYt24d7t69q3GsgwcPwtzcHJRS+Pr6ZlYTfgkWLVoksaODgwNLnqYroZk2YdfMzAwDBgxASEhIppy3oSAet2fOnEGfPn20vjCTe5I5DofD4XA4vxZc1OX8VCZPniyJXxgaGgrg6wO0h4cHK2vdujVevnwJ4NuDs1jYtbGxgYeHBxN/OZzsxsqVKzF8+PCsPg3OL4h6LMwXL17gzZs3GtuFa2NycrKGd6S64ODt7Q1KKcqWLYsrV65kwFn/GsTExKB8+fKglCJ37tyglOocp4LIk5SUhPDwcAwcOJB564mFtzlz5rB9vifG7K9AfHw8lixZAltbW1BKsWDBAo06nz59gp+fH5o1a4Z8+fKBUopcuXKhcOHCWL16NbvPA8CjR49QvXp1UEoxYsSIzGxKtubTp0+oXbs2KKXo3Lkz7OzsNIT07xF2KaWSfslJH2Jh99GjR/D09IS9vT26dOmCmTNnckGXw+FwOBzOLwcFeNAozs8hICCA/F979x1Y4/3+f/x5TpbYEjMIVbXVqipFVVGbWgmxqq3VoUgRNVsURbRUae3xscWoWXvWqD0qlEoItVc065z794ffuXsioeNbSSSvxz9NzrnvO/f77nHuc7/OdV/vNm3aYLPZCAkJoUmTJuaswgDbt2+nfv36PHjwgIYNG7Jy5Upz3bi4OFxdXYmLi6NOnTps3boVeNgP0dFDVySlcrx+Rf6KY4Z1gJkzZ7Jp0yaWLFlC5syZyZ07N+3ataNBgwYUL14cIN57aGLbAFi2bJnZo3PUqFFmj8606sKFC7Rv397sA1u4cGEWLVpE2bJl/3Lds2fPEhYWxr1798iSJQsFCxakYMGCQMLjnlrcuHGDWbNmERkZycCBAwF48OAB6dOnj/feFhERQVhYGAMGDODXX3/lwoULABQpUoQ6derw8ccfU6hQIWbPnk3Hjh0BWL9+PbVr106WcaU0V65cYefOnTRp0oTp06czcuRILly4QPHixdm+fTve3t6PPZfExsbi5uYGQNu2bTl16hR79+7VeedfMAwjXt/hO3fukCVLFvP31PrvXERERFInhbryn+nRowcTJ04kKCiIYcOGmROhWK1Wdu3aRd26dYmMjCQgIIA5c+YA8T9cx8TE4O7uTlxcHOXKlaN48eIsWrQoOYckIvKfcQ4LgoKCGDVqlDmRT548ebh8+TJubm6UL1+eESNG8PrrrwPx3yedfz5z5gyrVq0iMDAQgMDAQEaPHg0kHganJWFhYbRu3Zo9e/aQPn16+vfvT/fu3cmaNWuiy//V8Urtx9MR4gI0atSIffv2cerUKby8vMxzs8P9+/fZu3cvS5YsYdasWcTExGC32ylZsiQVKlTg7bffpn///uzdu5d33nmHr776inTp0iXX0JKc87/RGzducPPmTdzc3MwvBwCuXbvG0qVLGT16NL/99ttjg13He8ajrz/H7/pC8f/O+dg+GviKiIiIpHQKdeU/cenSJSpWrMiVK1dYsWIFjRo1Mj8oPy7QjYqKIl26dNy6dYts2bIBEB0djYeHR7wP2aqaEJFnnfN7Wu/evQkODgZg4MCBVKpUiZo1azJ79mwGDx7M1atX8fHxYfr06WaVo3PYEB0dzfDhw9m9ezebN28GYPDgwQwePBjQe6ZDWFgYAQEB7Nq1Cy8vL8aNG0eLFi3M8FIS2rp1K/Xr1ycqKorSpUuzZcsWvLy8zPDw0XBxw4YN7N27l3HjxnHnzh0APD09cXNz4+7du6RLl47Tp0+TP3/+5BpSknI+Phs3bmTy5Mns3buX2rVrM3DgQJ577jlz2Zs3b7Jo0aJEg12bzQaAi4sLFy5cICAggBkzZvDCCy8k+rdEREREJG3Sp0H5T1itVlxcXMiTJw/lypUzH3tcoBsbG2tW7nzxxRfMnj0bAA8PD7O6Fx5etCicEJFnneM9bfz48Wagu2TJEgYMGED9+vVJly4d586d4/fff8cwDC5dukTbtm358ccfAeIFujt27GDYsGFs3ryZKlWqMGXKlDQV6D7pu2jHc3a7HV9fX+bNm0e1atW4efMmvXv3ZtmyZTx48CCpdjXFs9vt8X4vVqwYY8eOpVChQhw7dozq1atz8+ZNsz2S87kZoE6dOgwcOJA9e/bQt29fypcvzx9//MHdu3cBaN26dZoJdJ0/uyxYsIAWLVqwbNky0qdPT+7cufHx8Ym3vJeXF61ataJPnz4ULFiQU6dOUb16da5evYqLiwsuLi6Eh4dTt25ddu/eTVBQULz1FeiKiIiIiCp15f/MMAxCQ0OpWLEi9+/fZ9WqVTRo0OCxga7z7YKLFy/Gz8+PSpUqsW7dunh9zUREUpMjR44QEBDAyZMnmT59utl3FODTTz/liy++AKBLly4cOHCAn3/+mZw5czJ79mzq1KljLhsZGcnSpUt58OAB1atXp0SJEkDaqNxzDq0jIiI4c+YMoaGhZMyYkZIlS1K0aFE8PDyAP881YWFhtGvXjh07duDt7U1wcDDNmjVL0xW7hmHE+9L0559/pmzZsri4uHDjxg2zgvTChQuUKFGC7du3x6vYdeZ43cXGxhIVFcWoUaPYsGEDFSpU4NtvvwXSxpcNDgsXLqR169YA9OrViy5duvD8889jtVoTvb3/0YrdokWLMnDgQOx2O4MHD+b8+fPUrFmTtWvXmn11RUREREQASKoZ2eTZ5zxrsIPNZjN/bty4sWGxWIzAwEBjxYoVRsaMGQ2LxWK0bdvWXMZ5RuFbt24Z7777rmGxWIzx48c/3Z0XEUlmY8aMMSwWixEUFGTcu3fPfHzIkCHmjPYhISHmsrly5TIsFouRO3duY/369U/cdmLvz6mNY2Z6wzCMcePGGdWrVzePm8ViMVxdXY22bdsa8+bNM5dznHMuXLhgLp89e3Zjzpw5RmRkZJKPITnt3LnTWLp0aYLHu3XrZuTJkyfecbt+/boxadIko2DBgobFYjFKlixp3LhxwzCM+OdxZ86vwYsXL5o/O/9/S+22bNlieHl5GRaLxfj888/jPfekf6M3btwwpk6dahQpUsSwWCxG+vTpDXd3d8NisRh16tQxj/njjr2IiIiIpE2pu6RH/jN2u92sLrl58ya//vorNpsNq9WK3W7HMAzKlCkDwKxZs/D39ycyMpJ27dolWqELEBISwrRp0yhWrBjVqlVL+kGJiCQRm83GlStXyJo1K7Vq1SJjxowAfPXVVwwdOhSAOXPm0LRpUwA6d+5svqf+/vvvtG/fno0bNz52+6l9ch/nqtLevXvTu3dvdu3aRaZMmcifPz+5c+fGZrOxcOFCOnfuzPDhwwHMtgG+vr7MmTOHatWqcePGDXr27ElISEiaacXwww8/UK1aNUaPHs2yZcvMx3v06MHkyZO5cuVKvH6v3t7eZmuAAgUKcPLkyQStGB7lmPQPIG/evEDaaaHkGPcPP/zA7du3adu2LX379o23zJP+jXp5eeHn58e0adN45ZVXcHd3p2TJkvTo0YPVq1ebx1yToomIiIhIPMkcKsszwLnKZsaMGUajRo2MF1980RgxYoRhs9nM6pPIyEijfPnyZtVU1apVjaioKMMwDPO/jmVDQkLM5VSlKyJpwS+//GJs2LDB/H379u1mJWRwcLD5uKMab926dYa7u7uRJUsWw2KxGDly5DB++OGHpN7tFGXQoEHmuWPKlCnGgQMHjJs3bxqnT582evToYR5Pi8ViDBw40FzPcR57tGJ3ypQpRkxMTHINJ8lMnz7dPC5vvPGGsWHDBuPDDz80LBaL4eLiYqxevTrR9f5NxW5adf36dSN//vyGxWIxvvnmm3h3Mv0TUVFRxqlTp4wrV66Yn5nSUrWziIiIiPx9qtSVJ3Lugzdo0CA6derEDz/8gMViIVeuXFitViwWCzabjfTp0zNlyhQKFy4MwIULFwgODmbPnj1mj8NDhw4xfvx4mjVrBsAnn3xCjx49gIQTtoiIpCZFixaldu3a5u+HDx8mPDycOnXq0KJFC/NxRzWet7c3sbGxVKlShapVq3L9+nV27tyZ5PudUqxdu5aJEycCD/uxd+7cmfLly5MtWzaKFCnC+PHjGTFiBDVr1gRg2LBhTJgwAQAXFxcMwzArdqtWrcqNGzc4d+5cmuhT+vbbbzN9+nQ8PDzYvHkznTp1Mo/l2rVrqV+/fqIT0P2bit206ty5c9y4cYMsWbJQtWrVv+xvndjxjouLw8PDg2LFipErVy6z+jktVDuLiIiIyD+n+7jksZwvJPr06cOYMWMAmDBhArVr16ZIkSLmso7lypUrx7fffkuPHj04efIkn3/+OZ999hmvvPIKhmFw/Phxbt68CUC/fv0YMWIEkLYmURGRtM1ms2EYBvPmzcNut1O4cGHy5cuXYLnLly8DULlyZXLmzEm9evUICgpK6t1NMY4ePcrt27dp0qQJdevWjTcxnOPn1q1b4+npSWRkJHv37mXKlClUqlSJl19+2bz93dfXl5kzZ7Jy5Uo+/vjjZBxR0nAcm44dO5IhQwYCAgLM19ann35qftFgJDKJF/wZ7AKMHj3aDHafNHlaWuQIae12O/fu3TN/fly46zjW+/fvJ126dJQuXTrR45jaW6uIiIiIyL+nSl15LMeFxMSJE81Ad/ny5bz//vtmoPtoda2LiwtvvPEGq1ev5o033iBz5sxERUWxdetWtm3bxo0bN3jttdf45ptvFOiKSJrk4uKCq6srPj4+AGTKlAmA6Oho4M/31X379gFQqVIlunTpYga6NpstqXc5WRmGgc1mY+nSpRiGQZ48eciQIUO8sMxqtZqhWtOmTfH39wfgl19+4dixYwm2WahQITPQTe3Vps7H6dixY/HGu2/fPrPHrvMxfNTjKnavX7+uQPf/y5kzJ+7u7ty7d4+FCxcCTz6m8PD1+eGHHzJp0iTu3LmTVLsqIiIiIqmEQl15oitXrrBo0SIsFgvjx4+ncePG8Z5PrALFMAwKFCjAmjVrWLx4MV999RV9+/ZlyJAh/PjjjyxYsIBu3boBCnRFJO0qWLAg8HCyNOc2NVarlSVLljB8+HB8fX3N8Nchrb1nWiwWMwgHHtsuwWKxmIF4jx49qF27Nna7nTlz5vDHH388NlxLK6Hk5cuX2bZtGxkzZuTDDz/Ew8ODH3/8kYkTJ7J8+XIg/mRnj/L29sbPz49+/frh6+vLyZMnmTJlShKOIOUyDIP8+fPTpEkTXF1d2bp1K2vWrAESP6aO33/++Wf27dvHnTt3SJcuXZLvt4iIiIg829LGlYz8aydOnGDnzp1kypSJqlWr/q11HD123dzcqFq16mPXU584EUmLHLe59+nTh4MHD7J9+3Zq1qxJv379sFgs3Lx5k6+//hqA7t27U6pUqWTe45ShbNmy/PTTT2zYsIFTp05RvHjxBMtYrVZiYmJwd3enSJEi/Pjjj9hsNjw9PZNhj1OWPHny8O233xIXF8eLL75ImTJl6NatG1u3bjWXadq0qRlCJnbbv5eXF82aNeP+/fvcvXuXTz/9NAlHkPwSOy6Oxxx3Ks2ePZvjx48ze/ZssmbNSpUqVbBYLMTGxppfSFgsFk6cOEG/fv0AqFGjhvmljoiIiIjI36VQV0zOFyuOHnmHDx8GoHTp0pQvX/4vt+HoH+cIax3bMQwDwzDiVfaqT5yIpEWO974cOXLQq1cv4uLi2L17N1988QUxMTHm+2dgYCB9+vQBntybM7VznJuKFi0KPLyDZNu2bRQuXDjRql13d3cAMmfODEBkZCT3798nffr0afIYOqpCLRYLJUqUMB/v2LEjFouFrl27PjHYdfz38uXL5MyZkxw5ctClSxcyZswIkOp76jp/Nrp16xb3798nNDQUq9VKuXLlSJcunfmlQbt27Thz5gzDhg1j0aJFxMbGEh4ejp+fn/lavXfvHidOnKBNmzZcunSJdu3a8c477yTb+ERERETk2ZV6P4XLP/JoGwTHBZrjVtabN29y7949PD09n3jx5rhg3rp1K1WrVjWXtVgsCnFFRJy4uLhQt25dChQowMiRI9m/fz8RERHUqlWLmjVrmj1f03qbGkeo9sEHH7BgwQL27t3L559/TuHChalVq5a5nCP4NgyDuLg4QkNDAWjcuLEZQKYFj34B8Oi513Fet1qtdOjQAeCxwa4jsF23bh2DBw/m7bffjhfoQupuX+F8LNesWcN3333H/v37zYnmSpQoQY0aNXj77bepUKECAJ999hmRkZEEBwcTEhLCjh07WLx4MeXLl8fT05Pdu3ezY8cOrl69Su3atZk2bRouLi5p/t+5iIiIiPxzFuNJMzhImuB80fL222/j5eXF2LFjAZg8eTLdu3fHzc2N3bt3U6FChcfelumwfPlyhgwZQvfu3encuXOSjEFE5Fl38+ZNoqKiyJEjh1nVlxaCnkdDyJiYGCwWS7wqXEe4uGPHDrp27cqpU6fImzcvEyZMoGrVqmTPnj3eNpctW0aLFi3IkCEDCxYsoEGDBkk2nuTk/Hq5cOECp0+f5vz58xQsWJB8+fJRsmTJRJedNWsWXbt2JTo6mho1avD+++/TvHlzANavX0+9evUACA4OpkePHkk8quTh/Fln7ty5tG/fHoBcuXKRPXt27t69S3h4OPBwkrS5c+fG+5Jh+PDhjBw5kpiYGGJjY+NtO2PGjDRs2JDZs2fj6uqa6qudRUREROTpUKgrpkGDBjFs2DDg4UVc7dq1uXz5MrVr1+bkyZM0bNiQyZMn4+Pj89hgNzY2lp49ezJp0iS+++473n333aQehojIM+Vx76d/9QVaauAcLK5du5Zjx46xdu1aYmNjKV26NKVLl6Z9+/ZkyJABi8XC/fv3CQkJYdiwYZw5c4YcOXLQuHFj6tevT6VKlTh79iwHDhwgMDAQgIEDBzJ06NDkHGKScT6WY8aM4X//+5/ZQgkeBo+9e/cmMDDQfF09Gux269aNqKgoSpcuTeXKlfH19WXAgAHAw8nngoODk3ZQKYDjCwKAvn37EhAQQJEiRbh9+zbr1q1j0qRJ7Nu3D4AtW7bw2muvmeuuX7+ew4cPs3jxYux2O3FxcdSsWZOqVavSrFkzrFarAl0RERER+dcU6grw8LbCJk2aYLFYmDVrFjVq1CBPnjzcu3eP999/n7lz55IrVy46derERx99RK5cueLdwukwf/58AgIC8PX1ZeHChVSqVCm5hiQiIimYc6A4ePBgJkyYwJ07d8wesFarFbvdTtOmTWnVqhXNmjXD3d2dW7dusXXrVoYOHcrRo0fNW9cLFCjAxYsXsdlsAPTp04eRI0cCqb8nsfOx7N27N8HBwVitVkqUKEGhQoWIi4tjzZo1ALz77rsMGDAAX1/fBOvOmzePoKAgrl69SkxMjFlF6nws00L1uMOJEyfw8/Pj5MmTDB48mMGDBwN/fuFy8eJFatWqRWhoKHnz5uXw4cN4e3sneL3dv38fNzc37t+/j7e3t/l4an9dioiIiMjTpdKANOrRypA9e/Zgs9mYMWMGrVu3Nh/PlCkTQ4YMYc+ePfz666/MmzePu3fv0rNnTwoVKmQu98cff7By5UoCAgKAhxU9CnRFRCQxhmHEmxBu3LhxADRq1IiCBQty48YNwsLC2LlzJ8uXL+f8+fOEhYXx0UcfkS1bNho1akSlSpXo2bMnp06d4vjx42agW7t2bZo2bUq3bt2A1B9COh/L/v37m9W033zzDTVr1uSFF14AoEGDBqxdu5apU6cSGxvLwIEDKVSoULx+rgEBAeTMmZN169axdOlSqlSpQvXq1enatSuQ+o+lgyO0PXbsGOfOnaNu3bp8+OGHwMM7ktzc3Lhy5QrNmjUjNDSUEiVKsH37dry8vBIcI7vdbvYgfnRiPwW6IiIiIvJ/oUrdNMj5lt6xY8fSqlUrBg8ezMqVK/n555/x9fU1n3dUkZw8eZKaNWty9epV0qVLR+7cuenRowdZs2bl+vXrHDlyhLlz5wLwySefMGrUqHjri4iIPCo4OJjevXsDsGTJEurVq4enpycAly5dYvXq1WagWLRoUT744AM6d+4cLxy7fPkyx48fx8PDg8yZM1OgQAGyZcsGpJ0QEmDOnDnmxGfLli2jadOm5nP9+/c3K20dOnToYAa7kPBY3bt3j4wZMybaqiG1c3x2adiwIWvWrKFXr158+eWXGIaB1Wrl6tWrNGjQgJ9//plSpUqxdetWvLy8iImJwd3dnXv37mGz2ciaNWtyD0VEREREUjFV6qZBjgu0fv36MXr0aJYuXYphGJQsWZICBQrEW9ZqtWKz2ShRogTbtm3jnXfe4fTp0/z2228EBgaat7m6uLiQPn16AgMDGTJkCJC2LgBFROSfuXbtGiEhIVitViZNmkSzZs1w/p45b968dO7cmdy5c9OyZUtOnz7NwoULefnll6lYsaJZMZknTx7y5MljrufYhnMFa2p369YtFi1aBMCECRPiBboDBw40A90FCxZw7do1PvzwQ2bNmoVhGAwaNMis2HX+0jdTpkzmNlL7sXz0C2jHz45j8fLLL2OxWLBYLPEC3ZIlS7Jt2zayZctGbGws7u7uwMMvKMLCwujatSu5cuVK+gGJiIiISJqgUDeNunPnDtHR0eTKlYuffvoJNzc38ubNS3h4OHnz5o13cePi4oLdbqdo0aIsWrSIdevWERISwunTp4mKijJv2XzppZfMC0kFuiIi8iSnT59m586duLu7U65cuQQTwzl+b9y4Mf/73/9o2bIlO3fuZPbs2VSsWDHBrewOjm2k9knmnP3000+sXr2aNm3a0LJlS/PxYcOGMXz4cOBhz/tWrVpx584dTp06xaRJk5g9ezY2m42hQ4dSqFChxx6z1HwsHdW3ALt37yZ9+vSULVsWwPwcs3nzZlq1apUg0N2+fTvZsmUjLi7OfD2eOnWKvn37cv/+fZo2bapQV0RERESeGt0Xn0ZlyZKFTz75hC5dupArVy5iY2O5desWv/76q1md68xqtWIYBj4+PnTq1IlVq1axY8cODhw4wP79+xk2bJgZ6NrtdgW6IiKSKEcl7YULFwAoWLAg5cuXTxAcWiwWc9nmzZvzySefADB37lxOnz6dhHucssTFxSV4rHDhwuTOnZvXX3+dnDlzAjB9+nQGDRoEwIwZM/Dz8wMgc+bM1KpViyxZsgAPJ0f7/PPPOXfuXBKNIGVxvO5mz55N1apVGT16NKGhoQCUL18egNDQUA4fPkzDhg0TVOg+OkfB5s2buXfvHg0aNKB06dJJPyARERERSTMU6qZhPj4+dO7cmffee4+8efNy584d3n33XS5fvmxOnOLMuc8uQK5cuciZMyfZs2ePt5x66IqIyOM4ziWOfqMRERHs3LkTwzB4tM2/c9DrCNju3LnDrVu3kmZnUxibzWYGiOPHj2f37t3ExMTwwgsvcOzYMd555x3g4TGdN28eAIMGDTJ77Tqqnxs1akShQoXM6tJZs2YRGBjIjRs3kmFUyW/Tpk10794dgPz585tfTDdr1gxPT0+2bt1K7dq1OXDgAKVLl2bz5s14eXkRGxuLq6ur+br9+eefGTFiBHa7ncaNG+vzkIiIiIg8Vfq0mcb5+PjQtWtXOnXqRL58+Th37hwtW7bkypUriQa7oNBWRET+nifNxer4QvD+/fv89NNPZs/SR9dx/F6vXj18fX0BePDgwVPa45TLua9tUFAQvXr1IigoiIsXL2Kz2fD29jaX/fXXX9myZQteXl7UrVvX/DLWuTWFp6cn1apVY8KECcDDHrrO20jNHK8pu92OYRjMmzePBw8eMHToUEaNGsXzzz8PQKlSpfj8889xd3fnxo0bZMuWjR9//JEcOXIAmAG7xWLhxIkTtGrVisuXL+Pn50dAQEDyDE5ERERE0gylc6mY4yLucRyBrY+PD126dKFjx47kyZOH3bt306pVqycGuyIiIk9it9vNEPHBgwdERUWZjwNUqlTJrCANCgpi5cqVAAmCXcc2Dh06RFhYGABeXl5JM4gUxHEcZs6cyahRo7BYLLRs2ZJs2bKZYa/juB07dgyAQoUK8corr2C1WuN9JggLCyM8PJwrV67QuXNn1q9fz6xZs+JtI7Vyfl3+/vvv3L9/n71791K5cmU++uijBMs3bNiQgIAAXF1duXXrFt26dWPx4sVERESYYe6MGTOoX78+58+f54033mD69OkJjrmIiIiIyH9NE6WlUs4TlR08eJBffvmFQ4cOYbPZKFasGNWrV6dYsWLm8o6KXYBp06axc+dOWrVqxaJFi8idO7cmPhMRkb/N+ZyxaNEili9fzqlTp1i5ciX58+eP1wbgwIEDnDhxgt69e+Pm5ka9evXiBbuOAO7w4cNYLBZq1aplVlKmBY+efzdu3AjAggUL4k2KBn8eq/z58wNw/vx51q1bR61atXB1dTX7v27cuJHw8HB69eqFm5sbtWvXTvRvpUaOu40mTJjAokWL+OCDD7hw4QKvvPKK2WfYWZEiRejevTseHh7MnDmTkJAQdu3ahYeHB4ULF+bo0aNERkYSFRVFgwYNCAkJiXesRURERESeFn3aTIWcL8qGDx/OjBkzEkyAkjlzZvr160fdunXNWZ4V7IqIyP+V87li6NChfPHFF2Z15MqVK3n//ffN8LFx48YcOXKEiIgIfv31V95++23GjBlDQECAuUxsbCwrVqygZ8+e5jqZMmVKnsElMeeJR/fu3UvJkiVZvXo1b7zxBvXq1TPD8Uf5+vri6+tLWFgY8+fPB6Bu3brcuHGDLVu20LlzZwAqV64cb73UfI53HCubzUZ4eDg9evQwH7fb7eTJkweAmJgY3N3d461ToUIFvLy8KFeuHP369SMyMpKrV69y8eJFDMOgWrVq1KhRg0GDBuHi4qJAV0RERESShMVI7ffZpTF2u92sQgkMDGTcuHEAFC9enEKFCnHixAnsdjthYWGkS5eOBg0a0LVrV9544w1zGxEREUyePJlp06Zx+fJlqlevzoIFC8idO/djLyBFREScz0G9e/cmODgYgJEjR1K/fn1KlSqVYNnY2FiCgoJYuHAhly5dAqBp06b4+PiQNWtWzp49y6JFiwDo06cPI0eOBEhT5yM/Pz8WL17M9OnTGTVqFLVq1TJ74T7OhAkTzOAyb968PPfcc0RGRnLo0CEABgwYwGefffbU9z0lcH6tOALXRYsW4e/vby5ToUIFdu3ahbu7+xNfW+fPn+eXX37hwIED5MqVCy8vL1577TWzz66+ABcRERGRpKJQN5UaMWIEAwYMAGDu3LnUqFEDHx8frl69SmhoKKNHj+aHH37Azc2NmjVr8umnn1K1alVzfUewO3PmTC5evEixYsXYu3dvmqmOEhGRf2/s2LF88sknAISEhNCkSRPzOefg1znYnTRpEqtWrWLz5s3xtuWY1Kt3794MHToUSFvB2aVLl2jVqhV79uwxb+t/++23mTZtWqLLOx/fsWPHMmjQIKKjo83+rm5ubvTs2dMMx52XT42cA9rJkyczatQojhw5QubMmQkJCaF58+bAwz7NQ4cO5b333jMrdZ+0rX/zvIiIiIjIf0mh7jNq1apV1KxZkwwZMiR47tixY7Ro0YIzZ84wd+5c2rRpk+g23nnnHWbMmIG7uzsdO3ZkyJAh8apxHcHuiBEj6NChw2MvIEVERByOHz9O+/btOXLkCJMnT+a999574vKOUNFut/Pbb7+xbNkyduzYwaVLl7BYLDRu3JiyZcvSqFEjIPUHuo+OLy4ujpMnT9K/f3/WrFmDxWKhbNmyzJo1K17lszPnoHbt2rUcPXqUbdu2UaVKFYoXL24Gman9WDpzDnADAwP54osvcHFxYcWKFbz11lsAVK9enX79+pk9iEVEREREUjKFus+gNm3asGDBAkaOHMknn3ySoCpk4cKFtG7dmkKFCrFlyxby5csXbxnnXm8BAQHMnz8fDw8PFi5cSOPGjeNdDIaHh3P06FEaNGgApP6KHhER+b9xnINKlizJ8uXL/9akZo9WOMbExGCz2bDZbGTMmNF8PDWdgxxjjo6OxsPDA7vdjt1uN8/PkydP5rXXXqN48eLY7XaOHz9O3759Wb9+PRaLhVGjRtGrV6/HHo+/Olap6Vj+ld9++42mTZty9OhRhg8fTvv27cmTJ485/pUrV9K0aVMA6tSpQ+/evXn99dcV7IqIiIhIipY2Ps2nIu+99x4LFizAYrHwyiuvxLsIdtxaefDgQQBeeOEF8ufPnyD0dXV1xWazATBp0iSqVKlCdHQ0w4YN48GDB/Eu8vLnz28GujabLc1cAIqIyD/j+I543bp1wMNz0N8JdB2TqDl+hoctAjw9PeMFukCqOgc5Jo7z8/MjIiICq9Vqhogffvgh3bt3p3fv3uZ5uXTp0owaNYr69etjGAZ9+/ZlwYIFj93+o8fKcWwf93xq8uhYL1++zNGjR+nWrRtBQUHkzZvXrA6Hh5PvrVixAoANGzYwZswYtmzZQlxcXJLvu4iIiIjI36UShGfIiBEjmDZtGp6enqxbt45q1arFe95xgebp6QnA6dOnuXTpUrxqFAcXFxcMwyBDhgxUq1aN3bt3c+3aNWJiYkifPn2ifz+t3KIpIiL/3r179/7R8o7z0507d8iSJUuaqSA9fPgwfn5+ZqXu5MmTyZYtGx9++CHffPMNAD169DDPyRaLhdKlSzNixAgsFgurV6+mXbt2WCwWWrdu/Zd/Ly0cUwfHWGfOnImbmxteXl4A1K5dO15VuNVqNX9v1KgRK1asoEmTJvz444/mMqrYFREREZGUKu18wn/GRUdHs337dtzc3AgODo4X6K5YsYLQ0FDz95w5cwIQGRlpVv84KnMf5erqyptvvombmxs3btzg1q1bT3cgIiKSKjlCsLJlywJw8uRJjh8//rfWnTBhAuXLl+fy5ctpJnzMmjUrzZs3x9vbm6VLl/L+++/zzjvvmIHu6tWrefPNN3HukuUIdocPH06DBg0wDIO2bdsyf/785BpGirV69Wo6derE22+/zaRJk8iUKZN5h9Ojx9TxuyPYhYcVu2PHjmXLli2P/QwlIiIiIpKc0saVUypw/fp1tm7dSmxsLNevXzcf79KlC2+99RZTp07ljz/+AMDPz48XXniBa9eu0aVLF27duoWLi0uCixLHBfiFCxeIjY0lNjb2sTM+i4iI/B358uUD4Pz58+zevRuAJ7Xvv3fvHkePHuX8+fNs27YtSfYxuRmGQcGCBRk6dCjNmjUjU6ZMLFy4kBkzZgCwbds26tWrl6DXMCjY/bvu3r3LSy+9RFxcHJs2beL+/fvs3Lkz0dfik4Ld4OBg1q5dm6Clg4iIiIhIclOo+4zw9vY2Z2Pes2cPBw4c4OOPP+b7778HHk7s4enpid1uJ1OmTAQEBJAtWzYOHz5M165duX37doJg13EBc/bsWVxcXGjdujV58+ZNlvGJiEjq0LFjR+rWrUtsbCw9evRgy5Yt8YLJR79gXL58OdOmTaN06dK8+OKLSb27ycJisWC323n++ecZOXJkvHPvq6++SsWKFYGEvWGd108s2H1Sj920xt/fn759+1KlShWioqIwDIN9+/ZhsVjM4+/sccHuunXr2LRpU5qpIBcRERGRZ4c+oT4j0qVLR926dTEMg9WrV+Pv78/XX38NPLzgqFWrFoZhYLVacXd3p1WrVlSuXBlXV1eWLl1KQEAAV69ejdcX12KxEBISwvDhw7HZbFSvXj25hiciIqmAIxT76KOPKFeuHNHR0dSvX59Vq1YRGRkJ/Nmf3W63s2TJEjp06ABA586dKVGiRPLseDJwhITz58/n5MmTZp/7PXv20LZtWyIiInBxcflHwW6bNm2YPn16Ug4jRXJUODdv3pwePXqYLavGjBnDzJkzgT/76Tp7NNhduHAhFSpUYPTo0Um6/yIiIiIif4dmfngGOC5OPvjgA2JjY+nduzfnz58HHk6eVqdOnXjLARQrVowhQ4Zw//599u/fz9q1a6lUqRLt27enTJky3L59m9DQUPNCJSgoiI4dOybYjoiIyN/lOHdUq1aNd955h8mTJ3P8+HFatmxJhw4dqFixIi+//DKHDx/mwIEDTJw4EYBPP/2U999/HyDNTJQGD6uWs2fPTpUqVejYsSOHDx9m7ty5LF++HIvFwtdff02ePHkee0wsFgsvvvgiI0aMAB72kT106FBSDyPFsVgs2Gw2XFxcaNmyJfAwxN22bRvdunUjXbp0+Pv7myGu82ce52C3ZcuW5vpxcXGaME1EREREUhSL8aRGd5Li9OzZk6+++sq86GjZsiVdunShZs2aQMJA9siRI4wfP55NmzZx8eJFXF1diYuLAzDbMQQFBTF8+HAA8yJIRETk/+Lu3busWLGC7777jl27dmG1WrHb7Xh5eXHz5k3gYdAWFBTE559/DqT+c5BzOOv4OSoqijt37pArVy7Onz/P8OHDWbJkCffv3+ett976y2AXHgaOR44cYf/+/XTt2jUph5RsHv28k9gX0o7Xk2EYLFmyhIkTJ7Jjxw7Sp0/P1KlT8ff3f+y6IiIiIiIpnULdZ8iqVato0qQJAB06dGDWrFkANGnShB49elCjRg0g4cVJREQER44c4csvv+TixYtcvXoVq9VKixYtqFq1Ku3btwdS/8W0iIgkrZiYGK5evcqIESPYt28fBw8eJFu2bMTFxeHv70/NmjXx8/MDUv85yHl8hw4dIjQ0lHLlylGkSBHgz3P3b7/9xrBhwx4b7DrO7xaLhYMHD5I5c2YKFy4c79yf2qtKncd69OhRfv31V1asWEFsbCxFixbl+eefp3Xr1glC8CVLlvD111+zc+dOBbsiIiIi8sxTqPsMsdvtDB48mCpVqlCvXj2GDx/OwIEDgb8Odh2uXr3KvXv3SJcuXbyJWVL7xbSIiCSv27dvExERQYYMGbBareTPn998LrW3XHA+x3799dd8//33nDt3jkqVKrFo0SKyZ88O/HnuvnDhAp9//nm8YPerr77Cx8eH2NhY3NzcWL9+PY0aNaJYsWJs2bIFb2/v5BxiknH+fLNkyRI+/fRTLl++zP3794E/2ye0atUKPz8/GjZsiJubm7n+k4Ld1P46FBEREZHUJfWWcaQijtzdarWat6jCwx6EFouFAQMGmLM0A9SoUSNBnzjHhUrOnDnJmTNngr+hQFdERJ4Gx7koa9asZM2aNcHjjkk+UyvnQHfAgAGMGDECi8VCo0aNaNKkiRnowp+BZIECBcwvbZcsWUJISAixsbFMmjQJHx8f1qxZQ8OGDQGoW7dumgl04c++zfPmzaNdu3YAVKxYEW9vbywWC2FhYZw4cYJFixZx9uxZzp07xwcffICHhwcALVq0MLezY8cO3nvvPQD8/f1T9etQRERERFIfhbop0KOVIo9W3BqGgd1ux8XFhf79+wP8ZbCrCxUREUkOj7ul3bmNQGrlOFcD9O7dm+DgYOBhtW7Lli3NL1mdz/uPBrtWq5WlS5eycuVKDh8+TPny5Vm+fDnwsM++Y8LTtFRlunbtWrN11ODBg+nWrZt5LE+fPs2GDRvo0aMHBw8e5P79+7i7u9O1a1ezYtc52N2+fTtt2rTB29ub2rVrJ8+ARERERET+BYW6KYxzRc+ePXsIDw8nLCyM6tWrky9fPnx8fMyQ1rHs3w12RUREJOk4QtbRo0ebgW5ISIjZHx8w2yk4c5y3HcFu9uzZWbp0KWfOnCE8PJz06dPTq1cvPvvsMyDttFAyDIM//viDGTNmYBgGPXr0YPDgwfGWKVq0KEWLFsXX1xd/f39CQ0NZsGABL774Iq+99prZb7hFixZYLBauXbuGp6cnr7/+ejKNSkRERETk31FP3RTk0Vs0Z86cSUREBABZsmShQoUKBAYGUrduXSB+xS7AiBEjGDBgAPD3e+yKiIjI03P69Gn8/f05duwYEydOpGvXrmZbJefz8s8//8y1a9fw9vamcOHCZMuWzXzu9u3bnDlzhhkzZvD8889TuHBhMxhOK4GuQ1hYGGXKlOHOnTtmQO78Gcf555CQEJo3bw7Au+++y3fffQfEr2resmUL1atXx8XFJdVPMCciIiIiqYtC3RSoT58+jBkzBqvVSpYsWciYMSPh4eEAuLm5MXfuXFq2bAk8Odht1qwZH3zwgRnsioiIyH/rwIEDlCpVinTp0iX6/KpVq2jSpAl58uRhw4YNFC1aFKvVitVq5e7du5w8eZIxY8awadMm7ty5g5ubG+3bt6djx468+uqrT/zbaanlgsOmTZuoXbs2uXPn5tChQ+TKlSvBF9fOvw8dOpShQ4ditVrZtWsXlSpVSrAMpL1wXERERESefWnrSuAZMGfOHMaMGQPArFmz2L59O8ePH2fYsGFUq1aN2NhY/Pz8mD9/PkC8VgwA/fv3Z9iwYQAsW7aMIUOGcObMmeQZjIiISCr2+uuvU6NGDdauXUtUVFS85xzfmZ8+fRqArFmzUrJkSVxdXbFarZw7d45BgwbRoUMHli1bRlRUFN7e3sTGxjJ79mxmzZpFZGQkT/ruPa0FugCZMmUC4MqVK+zatSvR4+Mc1lauXBlPT0/sdjvXrl1LdBnQhLEiIiIi8uxJe1cDKYwjjHXYunUrAPPnzycgIIBixYqRKVMmPvnkEwYOHEijRo0ACAgI4H//+x+QeLA7fPhwAEqVKsULL7yQRKMRERFJGyIiIjh79iwPHjygffv2Cb5AdYSGlSpVIn369Jw6dYrOnTuzceNG5syZw+uvv87XX3/NrVu3qFOnDmvWrGHFihW0bduW2NhYpk6dysmTJ9U66RGZMmXCw8MDgCNHjmCxWMz5A5w5fq9Tpw6FChUC4ObNm0m7syIiIiIiT5HaLyQj59smf/rpJ8qXL8/zzz9P8eLFWbZsGRkyZMBisZjL2e12duzYwbhx41i1ahUAc+fOpU2bNkDCVgwbNmygTp06Cf6WiIiI/N+dOnWKN998k2rVqjFv3jyABH1ZIyIi6NOnDytWrCAyMhJPT09iY2OJi4ujRo0adO7cmZo1a5IzZ07gYQVq1apVOXfuHGvWrDH76KcVzm0RbDYbhmHg6uoa73NM9+7dmTx5MgBLly7lrbfeSrCuw+nTp6lYsSL3799nyZIlNGvWLAlHIyIiIiLy9Gg2iGTkuDjx8/Nj8eLFzJ8/n+zZs1O8eHEyZswYbznDMLBarVSrVs18fNWqVbRt2xaANm3axKvYdXFxMQNd9YkTERH57xUvXpwDBw6YgWzfvn0pW7YszZo1M6tJfXx86NWrF9myZWPZsmVcvnyZMmXK8Prrr/PZZ58l+AI3NDSUsLAwALy9vZNtbMnBOZTdu3cvP/zwA/v27eP777/H19fXPEaNGjViz549HDlyhMDAQDw9Palbt65Zsev837NnzwJQpkwZXnnlleQcnoiIiIjIf0qhbjK7dOmSOQlau3btiIuLo3LlygmWc1ygPC7YtVqt+Pv7Y7FYEgS4CnRFRESeDkegO3ToUL788kt8fX3x9PSkXr16ZrBbvnx5XnjhBfr378+lS5fw8fHBx8cHeBhkOoeZ+/btw2azUadOnTTVPsn5GCxbtoyePXuan4+Cg4MZN26c+XydOnXYv38/Fy9e5Pz587z33nt8+eWX5ucgePi56fjx43z44Yfcv3+fatWqkSdPnuQZnIiIiIjIU6BQN5n5+PgwefJk+vfvz5o1awA4ceIEv/32GwULFoy37JOC3TZt2hAZGck777yTlLsvIiIiQLNmzQgJCeHo0aN8/PHHGIZB/fr1zWA3ffr0ZMqUKV6w+GirhpCQEPr06WNuL2vWrEk6huTiHOjOnTuX9u3bA9CpUyfatGlD1apVzecdbaaCgoK4c+cO8+fP59KlS7Rp04YNGzbg6+vL888/z5EjR1i4cCGXLl2iTp06ZiisdlQiIiIiklqop24KYBgGx44do0+fPmzYsAGLxcLEiRPp1q3bY5d3XJjs3LmTMWPG8MMPP9CpUyemTp2axHsvIiIiAL/88gv+/v4cPXoUX19fgoOD4wW7zpzDxRs3brB8+XLee+89APr06cPIkSOBxPvEplZr1qyhYcOGAHz22Wf079/fPEbOraQcxy42NpavvvqKlStXsnPnzkS32aRJExYvXoyrq6vaUYmIiIhIqqJQNxk4Dvmjvd+OHTtGUFAQa9euxWq1MnfuXPz9/R+7DUewu3HjRs6fP0+XLl2SchgiIiLyiFOnTtG6deu/FewC/O9//2PDhg3Mnj0bgKCgIIYPHw6krZ74ERERvPvuu6xbt46ePXsyduzYJy7vPInssWPHCAkJYc2aNVy+fBmLxcJrr71GpUqV6NatGy4uLgmqokVEREREnnUKdZPA373VzxHsOlox/N1g15kuWkRERJ4O5/Ouc6j46Dn+7wS7d+/eZciQIYwfPx6AggUL0qNHD3r06AGkrUAX4MCBA9SrVw83NzeWLVv2tyY1e/Rz0J07d4iNjSUmJsbsWQxp71iKiIiISNqg9O8pc76Q+Omnnzh9+jRbt24lY8aMvPzyy5QtW5bSpUuby5cuXZoRI0YAD29DbNu2LUCiwW5it2Mq0BUREfnvPRoM3rt3jyxZspjnYufnixcvzvz5881gt2fPngDxgt3MmTPz6quvsmXLFurVq0ft2rV5/fXXE/1bqZkjmF21ahU3btygXLlylClT5m+vB38G7JkzZ070s1FaOZYiIiIikrYoAXyKnC/KPv/8c77//nsuXrxoPv/NN99QsmRJ3nrrLT777DOzncI/CXZFRETk6XI+n3///ffs3LmTPXv2ULx4cV566SU6depE3rx541Xt/p1gt3nz5lSrVo3s2bOb6zkmAksrHCFsTEwMAJkyZcLT0/Nvr/fgwQPSp0+vCdBEREREJM1R+4WnxPniolevXowfPx6LxUKzZs0oVKgQdrudDRs2cPr0aWJiYggICGDOnDnm+om1Ypg3bx5+fn7JNSQREZE0x/l8HhgYyLhx4xIsU6hQIZYtW8aLL76Y4Ll/2mM3rZoyZQrdunUjV65cLF++nEqVKv3lOuvXr+fTTz9l+fLl5MuXLwn2UkREREQk5VBJw1PiuAAcPXq02S9v0aJFzJ49m1GjRvHll1+yYsUKWrRogaurK/PmzSM4ONhc32KxmBW79evXx26306ZNG2bMmJEcwxEREUmTHOfzzz//3Ax0/fz86NWrF1WqVMHX15dz585Rp04dtm3blmB9R8Xuiy++SFhYGIGBgaxZs4aoqKgkHUdKlzt3bgBu3rzJnj17gD8nlk1MbGwsBw4c4ODBg8ybNy9J9lFEREREJCVRqPsUHT58mJkzZ2KxWJgzZw7NmzfHw8MDm80GwO+//87y5cuJi4vDz8/PvDXT4dFg1zAMDh06lBxDERERSbMOHTrEN998g8ViYfny5cyfP58xY8awYsUKxo4dS4UKFbh69SqtWrVi69atCdZ3BLvlypXj/PnzBAQEEBoamvQDScGaNGlCo0aNiI2NJSgoiE2bNsXrj2u324E/g96DBw8yYcIEcufO/bcmVRMRERERSW0U6j5FJ0+e5JdffqF27dq8+eab5oWIi4sLO3fupFatWjx48IA2bdowf/58AOLi4uJtwxHsDh06lEmTJvH1118n+ThERETSkkfPxRcuXODq1auMHj2axo0bmwGjt7c3jRs3Zty4cVSsWJFr167h5+f32GB37ty55MmTh4YNGybaqiGtchzPnj17UqFCBaKjo2nYsCFr164lNjYW+LNi2mKxcPz4cfz9/bl69SrNmzenevXqybbvIiIiIiLJRaHuU+AIb9evXw9AqVKlyJ49O4ZhYLVa2bVrF/Xq1SMyMpKAgADmzp0LQHR0NK6urty+fZvDhw+b27NYLFSoUIGuXbsCCS82RURE5N9xBIrOXF0fziM7cOBAfvjhBw4ePIirq6sZHjpPyOXm5kaVKlUYM2bM3wp2Dx48yKJFiwDMO3fSOsfxfPnll3nnnXcoWbIk0dHRvPXWW/Tv358lS5Zw+fJltm3bxtixY6lXrx4XLlygYcOG5pwFif1/FBERERFJzVyTewdSsz/++AN4eMEHmIFu3bp1zUDXMTlabGysOWnKsGHD2Lt3L19++WWitxQ6LjZFRETk37t16xbZsmXDZrPh4uIS77khQ4YwfPhwSpQoQZEiRXjuuecoWbIk8PDLW+fWAC4uLmawGxgYyP79+/Hz82PhwoXUqFEj3nZz5coFPAyTH/2baV369Olp06YNHh4eTJ06lT179hAcHIzdbqdAgQJcuHABq9WK3W6nUaNGLFu2DBcXl0T//4mIiIiIpHaq1H0KHBd65cuXBx62YQDYuXNnooFuXFycGfweOXKEpUuXsmvXLjw9PZNh70VERFK/mjVr4uvry6VLl3BxcUkwKVfDhg0pWrQoJ0+eZNWqVfz6668cPHgQIF6g6+Ac7Doqdtu0aZNoxS7Er/aVP2XOnJk2bdowbdo02rdvj6+vLwBXrlwBoE6dOgwfPtwMdOPi4hToioiIiEiapJLPpyh//vwAbNiwgeHDhzNq1KhEA13nytuVK1dy8eJFOnbsSPHixZNlv0VERFKzrVu3cvToUSIjIylevDjh4eFkzpw53jIvvfQSCxcupEWLFpw9exZPT0/WrVtH6dKlyZIlS6LbdQ52+/Tpw969e6lZsyanT5/mhRdeSIqhpQoeHh4UK1aMmTNncu7cOSIiIrBarRiGwUsvvWTe2WSz2XT3koiIiIikWRbj0dIU+U81btyYH374AYvFgmEYdOrUialTpwIP2zM4V+MuXrwYPz8/0qVLx7x583jrrbeSa7dFRERSrVu3bhESEkLfvn158803zd72kPDL1iNHjtCqVSvOnDlDwYIFGTduHPXr18fd3f2x27fZbOzevZsOHTpQsWJFFi5c+FTHkxo92uLinz4vIiIiIpLaKdR9ShwXGxs3bqR3794cO3YMFxcXNm/eTLVq1eItGxUVxfLly2nTpg0An332GQMGDEiO3RYREUkTbt26RWhoKJUqVQKgX79+dO/eHV9f30SDXX9/f06fPk3hwoUJDg6mdu3aTwx24+LiuHDhAs8//zyA+r6KiIiIiMh/SqHuUxYZGcmsWbOYOHEiv/zyCx4eHnTo0IGXX36ZsmXLcuDAAfbt28f06dMBCAwMZPTo0cDDSVTUc09EROTpGjBgACNGjKBAgQLs3LmTvHnz/ifBroPO5yIiIiIi8l9TqJsE7t69S0hICN9//z27d+82Z27OmjUrt2/fBiBjxowEBgYyaNAgQBU9IiIiSeGPP/5g2rRpTJw4kdDQ0KcW7IqIiIiIiPyXFOomkejoaK5cucLIkSM5cOAAhw4dIkeOHBiGQYcOHahWrRoNGzYEFOiKiIgkpTt37hASEsLIkSMJDQ3F19eXnTt3ki9fvgTB7tGjR/H39+eXX37h+eefJzg4mDp16ijYFRERERGRJKVQNxncuXOHK1eumLNn586d23xOt2iKiIgkvTt37rB06VJGjx79j4LdIkWKMGbMGGrXro2Hh0cyjkBERERERNIShbpJ6HEzNWsGZxERkaT36Pn3nwa7AQEBnDhxgkyZMrFr1y5KlSqVHMMQEREREZE0SCWhSehxwa0CXRERkafHZrPF+z0uLg748/xrt9sByJIlC82bN6dPnz4UKVKEsLAwqlatysWLF3F1dTXXA3jxxReZN28e3t7evPnmmwp0RUREREQkSalSV0RERFIt5z71M2fO5MCBA4SHh+Pj44Ofnx+lSpUie/bs8Zb7JxW7ERER+Pj4JPhbIiIiIiIiT5NCXREREUmVnPvUBwYGMm7cuHjPFyhQgJdffpkvvviCQoUK/etg99G/JSIiIiIi8rQp1BUREZFU7YsvvuDTTz8FoEmTJuTIkYP169fz+++/ExMTw0svvcTcuXMpUqRIgmB32bJljBo1itDQUJ577jm2bdtGvnz5FOKKiIiIiEiyUqgrIiIiqdbZs2d58803uXDhAkuXLqVx48ZYLBbCw8OZMGECixYtIiwsjNKlS7N48eJEg92lS5cyduxYTp06Rbp06YiIiCBr1qzJOzAREREREUnTVGIiIiIiqdaFCxf47bffGDZsGE2aNAHAMAzy589Pnz596N69O8899xzHjh2jZcuWhIaG4uLiYk6u5pg8rXfv3mTLlo1GjRop0BURERERkWTn+teLiIiIiKR8hmFgsVji/fzbb79hGAavvvoqQLzns2fPzrvvvgvAlClTzGD30YrdLFmy8NZbb1GiRAleeeUVQJOiiYiIiIhI8lKlroiIiDzzbDabGdhGRUURFhaGzWYjW7ZslChRgueeew54OKEZ/Bnuenl58e6779KlS5fHVuwahkG2bNnMQNdutyvQFRERERGRZKVQV0RERJ5pzlWz48aNM6tqa9SowYgRIzh58iQ//fQTQKKTmyUW7Pr7+5vB7qM0QZqIiIiIiCQ3TZQmIiIizyznlguBgYGMGzcOi8WC88cbi8VCixYtGDlypFmxm5ibN28ydepUpk6dytmzZ8mdOzdHjhwhR44cT30cIiIiIiIi/4RKTUREROSZ5Qh0J02axLhx4wAYPHgwkyZNYujQoRQrVgzDMNiyZQtLlizh999/f+y2HBW77777LhkyZKBevXoKdEVEREREJEVSpa6IiIg8cxwtFwzDwGazUa9ePbZs2cLSpUtp0qSJudylS5do0aIFe/fuJVeuXHzyyScEBASQK1eux277+vXrHD58mFq1agEPe+iq5YKIiIiIiKQkCnVFRETkmeIcsp4/f578+fOTLl062rdvz/Tp083nHcFvdHQ0NWvWZM+ePX8Z7Dq3c4D4/XpFRERERERSCpWdiIiISIrn/B20I9Dt2LEjxYsXZ8mSJRQsWJDy5cvHe97FxYW4uDg8PDzYvHkzlStX5vfff+fLL79k3rx5ibZicA50HdsQERERERFJaRTqioiISIrUv39/Nm7cCJBg8rMdO3awbt06YmJi6NmzJ+fOnSMuLg6IHwC7urrGC3ZfeeWVvwx2RUREREREUjqFuiIiIpLifPTRR4wcOZJ+/fqxY8cOIH4Vbfny5RkyZAilSpUyg9nz588nui3nYHfLli1msDtu3DjmzZtHRETE0x+QiIiIiIjIf0ihroiIiKQocXFxZMyYkQIFCnDw4EE+/vhjtm/fbj5vs9nIkCED7du3p3v37pQqVQqACRMmsGXLlgRVvZAw2H311VeJiIggMDCQX375JUnHJyIiIiIi8n+lidJEREQkxXBMVBYTE8O4ceOYPHkyYWFhlCtXjuDgYKpXrw78OYHZgwcPmD17NlOmTOHIkSPkzp2bxYsX8+qrryaY9AweBsaurq5ER0fz4osvUqZMGRYtWpQcQxUREREREfnXFOqKiIhIimK327FarcTExDB27FimTJnyt4Ldb7/9lmPHjpEvXz4WLFhAlSpVnhjsOv7rvC0REREREZFngUJdERERSXEcgWtUVBRfffUV3333HefPn6dcuXKMGzeO1157DUgY7E6aNInjx4//ZbDrCI4f/VlERERERORZoCsYERERSVFsNptZQZsuXTratWtH8+bNyZs3L0eOHCEwMJBt27YB4OLigs1mI3369PF67F68eBF/f392796daI9d5xBXga6IiIiIiDxrVKkrIiIiKYZzG4Rp06axbt06zpw5w/Xr17l16xZ//PEHHh4elCpVirFjxz62FYNzxe7ChQupXLlyohW7IiIiIiIizyKFuiIiIpIiOLdB6NOnD2PGjMFisVChQgUKFy7MzZs3OXXqFOHh4VitVsqWLcu4ceP+VrA7e/ZsatSokYyjExERERER+e/ofkMRERFJERyB7tChQxkzZgwAixYtYvPmzfzvf/9jzZo1/Pzzz7Rt2xYvLy8OHjxIz549E23F0KFDBz744AOzFcOmTZuSbVwiIiIiIiL/NVXqioiISIpx6tQpmjVrRmhoKBMmTKB79+5mBW9sbCxubm5ER0czevRovv/+ey5evEj58uUZM2aMWYnrqNj9448/mDx5MlFRUQQFBSXvwERERERERP5DCnVFREQkxdiwYQN169Yla9asrF+/nooVK8Z73hHwRkdHM2jQIMaOHYuLiwulS5dONNh1BMHOj4mIiIiIiDzr1H5BREREUoxbt24BkC1bNvLkyQOA8/fPVqsVu92Oh4cHQ4cOpUqVKsTGxnL06FF69+7N9u3bgYetGAzDMANdx2MiIiIiIiKpgUJdERERSTHsdjsA4eHh/PbbbwBYLJZ4y1itVmw2G+nSpaNXr164u7vj5ubG4cOH+fjjj/nxxx8TXU9ERERERCS1UKgrIiIiKcZrr71GiRIliIuL47vvvuP69euJLueoui1QoAAxMTGUKVOGYsWKcfjwYQ4ePJiUuywiIiIiIpLkXJN7B0REREQcMmfOTOHChTl58iQ//fQTmzdvpkmTJnh4eCS6/O3bt3Fzc6NBgwZER0djt9vp27dvEu+1iIiIiIhI0lKoKyIiIknCMIxEWyI4Jj+z2+1kzJiR0aNHs3v3bs6ePcvIkSPJmDEjr732GhkyZCAuLg5XV1dznf379xMbG0uFChWoW7euuU1NiiYiIiIiIqmZ2i+IiIjIU2ez2eIFuhEREVy/fh2bzYbV+vDjiNVqJS4ujiJFijB16lS8vb05fPgw/fr14/vvvyc8PBxXV1dze0uXLqVfv35kz56dnDlzmts2DEOBroiIiIiIpGoWw3lKaREREZH/mHPV7MyZM9m0aRNLliwhc+bM5M6dm3bt2tGgQQOKFy9urhMdHc2yZcv46KOPuHHjBtmyZcPLy4uWLVsSGRnJ9evXmT9/PgCfffYZAwYMSJaxiYiIiIiIJAeFuiIiIvLUOAe6QUFBjBo1CovFgmEY5MmTh8uXL+Pm5kb58uUZMWIEr7/+erz19+zZQ4cOHQgPDyc6Otp83NGu4ZNPPmHUqFHAn20cREREREREUjuFuiIiIvJUOIesvXv3Jjg4GICBAwdSqVIlatasyezZsxk8eDBXr17Fx8eH6dOnU7t2beDPQPjKlSssXbqUHTt2cPbsWa5fv07jxo156aWXaN++fbxlRURERERE0gKFuiIiIvJUjR8/nl69egGwZMkSGjVqhJubGwD9+vVj9OjR5rI5cuRg7ty5ZrDrmBjNwTAM/vjjD9KnT28+pkBXRERERETSGt2jKCIiIk/NkSNHmDp1KgDTp0+nWbNmZqD76aefmoFuly5dqFChAteuXaNdu3Zs2LABAFdXVwzDwG63A2CxWPD09Iz3NxToioiIiIhIWqNQV0RERJ6ajRs3cvLkSfr160eLFi3Mx4cOHcoXX3wBwLJly/j222/x9/cnZ86cXL16lQ4dOpjBrsViwWKxmOs6/ywiIiIiIpIWKdQVERGRp8Jms3HlyhWyZs1KrVq1yJgxIwBfffUVQ4cOBWDOnDk0bdoUgM6dO1OmTBkAfv/9d9q3b8/GjRsBBbkiIiIiIiLO1FNXREREnprTp08TFhZm9sjdsWMH7du358KFC4wbN46PP/4Y+LN37vr162ncuDGenp7cvXuX7NmzM2PGDBo0aJCMoxAREREREUlZVKkrIiIiT03RokXNQBfg8OHDhIeHU6dOnXjtGByToXl7exMbG0uVKlWoWrUq169fZ+fOnUm+3yIiIiIiIimZ618vIiIiIvJ/Y7PZMAyDefPmYbfbKVy4MPny5Uuw3OXLlwGoXLkyOXPmpF69egQFBSX17oqIiIiIiKRoCnVFRETkqXNxcQHAx8cHgEyZMgEQHR2Nh4cHdrsdq9XKvn37AKhUqRJ16tQx17fZbOY2RERERERE0jq1XxAREZEkU7BgQeDhZGl79uzBw8MDAKvVypIlSxg+fDi+vr5m+OugQFdERERERORPmihNREREnjrDMLBYLFy5cgV/f3+2b9+Oh4cH/fr1w2KxcPPmTb7++msARo4cSZ8+fZJ5j0VERERERFIuhboiIiKSZGw2G6tXr2b06NHs3r0bd3d3YmJicHFxwWazERgYyOjRowHMlgwiIiIiIiISn0JdERERSVIxMTGcOnWKkSNHsn//fiIiIqhVqxY1a9bk448/BtRDV0RERERE5EkU6oqIiEiyuXnzJlFRUeTIkQM3NzdAga6IiIiIiMhfUagrIiIiSc7RY/fvPi4iIiIiIiJ/UqgrIiIiIiIiIiIi8gzR7CMiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPEIW6IiIiIiIiIiIiIs8QhboiIiIiIiIiIiIizxCFuiIiIiIiIiIiIiLPkP8HiOgf8WavhVoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 604, "width": 698 } }, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "from matplotlib import pyplot as plt\n", "\n", "gap = skrub.GapEncoder()\n", "pos_title = X[\"employee_position_title\"]\n", "loadings = gap.fit_transform(pos_title).set_index(pos_title.values).head()\n", "\n", "loadings.columns = [c.split(\": \")[1] for c in loadings.columns]\n", "sns.heatmap(loadings)\n", "_ = plt.setp(plt.gca().get_xticklabels(), rotation=45, ha=\"right\")" ] }, { "cell_type": "markdown", "id": "a8e26cb8", "metadata": {}, "source": [ "### `TextEncoder`\n", "\n", "Extract embeddings from a text column using any model from the HuggingFace Hub." ] }, { "cell_type": "code", "execution_count": 18, "id": "c601362e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAANACAYAAADtnYx4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAB2HAAAdhwGP5fFlAACMyklEQVR4nOzdeXTU1f3/8dcngSyQIISwhkISBFncQFAQWdWyRAkFlCIQcN+lKlhcWbQWqtAKCuIKKYtWRQhIQUADoixCsAWJYCEj+xLCkkASIfP5/cEv8yVmT2Y+85nJ8+H5nDPM3Ln3Hco5lpfve69hmqYpAAAAAAAAGwjwdgEAAAAAAAD5CCoAAAAAAIBtEFQAAAAAAADbIKgAAAAAAAC2QVABAAAAAABsg6ACAAAAAADYBkEFAAAAAACwDYIKAAAAAABgGwQVAAAAAADANggqAAAAAACAbRBUAAAAAAAA2yCoAAAAAAAAtkFQAQAAAAAAbIOgAgAAAAAA2AZBBQAAAAAAsA2CCgAAAAAAYBsEFQAAAAAAwDYIKgAAAAAAgG0QVAAAAAAA4ANM01Rqaqrmzp2rRx99VB07dlRwcLAMw5BhGHI4HG5b6+TJk3rxxRd11VVXKTw8XLVr11aHDh302muvKTs7223rFMUwTdP06AoAAAAAAKDSHA6HYmJiiv08LS1N0dHRlV5n+/bt6tu3rw4ePFjk561bt9aqVasUFRVV6bWKQkcFAAAAAAA+JioqSn/4wx/UtWtXt8576tQp3XbbbTp48KDCw8P1zjvv6MCBA3I4HPrrX/+q6tWrKzU1Vf3799eFCxfcunY+ggoAAAAAAHxA3bp1tXjxYh0+fFgHDhzQokWL1KtXL7euMWXKFO3bt0+GYWjx4sW6//77FRUVpWbNmmncuHGaPXu2JCklJUUffvihW9fOR1ABAAAAAIAPCA8PV3x8vBo2bOiR+S9cuKB33nlHktS3b98iQ5C7775brVu3liS99dZbHqmDoAIAAAAAAGj9+vXKyMiQJA0ZMqTYcfmf/ec//3HrAZ75CCoAAAAAAIC2bt3qet25c+dix136WUpKitvrIKgAAAAAAAD66aefJEkBAQEl3h4SGxtb6DvuVM3tMwIAAAAAUIWdPHmy1DF16tSxoJLySU9Pl3SxturVqxc7rn79+q7XJ06ccHsdBBUAAAAAALhRREREqWNM07SgkvI5e/asJCkkJKTEcaGhoa7XWVlZbq+jygcV59P3ersEoEhH4+7zdglAIfv22S/5BySp24mN3i4BKKRWcA1vlwAUKSPzZ2+X4Fb8nc598sMTwzBKHFfa55VV5YMKAAAAAADcKf/mDF8TFhYmScrOzi5x3Llz5wp9x50IKgAAAAAAcCM7nj9RFpGRkZIunrFx/vz5Ys+pOHbsmOt13bp13V4HQQUAAAAAwHc587xdgd9o1aqVJMnpdMrhcKhFixZFjktLSyv0HXfielIAAAAAAKDrrrvO9XrjxuLPf9qwYYPrdfv27d1eB0EFAAAAAADQTTfd5Lqx5OOPPy523L/+9S9J0jXXXKPo6Gi310FQAQAAAADwXabTfo+Pqlatmh544AFJ0vLly5WcnFxozNy5c/Xjjz9Kkh599FHP1OGRWQEAAAAAgNvt3LlTZ86ccf36wIEDrtfbtm3TkSNHXL9u0qSJmjRp4vq1w+FQTEyMJGnkyJGaM2dOofn//Oc/a/78+dq/f7/i4+M1depU9evXTxcuXNBHH32kF198UdLFLR933323u388SQQVAAAAAAD4jEceeURr164t8rOBAwcW+PX48eM1YcKEcs1fu3ZtffHFF+rbt68OHjyo+++/v9CY1q1bKykpSdWqeSZSIKgAAAAAAPgup+9utbCrq666Stu3b9e0adP0+eefy+FwKDAwUC1atNCdd96pxx9/XKGhoR5b3zBN0/TY7D7gfPpeb5cAFOlo3H3eLgEoZN8+37wTHP6v24niTyYHvKVWcA1vlwAUKSPzZ2+X4FbnD6d6u4RCqjdq7e0SfBodFQAAAAAAn2X68OGVKBq3fgAAAAAAANsgqAAAAAAAALbB1g8AAAAAgO/iME2/Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4Lm798Dt0VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgO9y5nm7ArgZHRUAAAAAAMA2CCoAAAAAAIBtsPUDAAAAAOC7uPXD79BRAQAAAAAAbIOgAgAAAAAA2AZbPwAAAAAAvsvJ1g9/Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4LJNbP/wOHRUAAAAAAMA2CCoAAAAAAIBtsPUDAAAAAOC7uPXD71jSUdGrVy/dfPPNys3NLdN4p9Pp+g4AAAAAAKg6LOmoSE5OlmEYysvLK9N40zRd3wEAAAAAAFUHWz8AAAAAAL6LWz/8ji0P08zMzJQkhYSEeLkSAAAAAABgJUs7Ksq6leOTTz6RJDVr1syT5QAAAAAAfJ2zbEcMwHd4JKjo1atXke/36dNHgYGBxX4vLy9Phw4d0t69e2UYhn7/+997ojwAAAAAAGBTHgkq8g/CNE3T9Z5pmvrmm2/KPMcVV1yh559/3hPlAQAAAAAAm/JIUJGQkFBgm8fcuXNlGIbuuusuVatW/JLVq1dXZGSkOnTooNtuu01BQUGeKA8AAAAA4C84TNPvGOalbQ8eEhAQIMMwlJmZqRo1anh6uXI5n77X2yUARToad5+3SwAK2bevjrdLAIrU7cRGb5cAFFIr2F7/vxfIl5H5s7dLcKvc1K+9XUIhwa17ersEn2bJYZoffvihDMPgFg8AAAAAAFAiS4KKOXPmyDAMRUVF6eabb7ZiSQAAAABAVeBk64e/sSSoWL9+vZxOpxITE61YDgAAAAAA+KgAKxZp0KCBJNnufAoAAAAAAGAvlgQVHTp0kCSlpqZasRwAAAAAoKownfZ7UCmWBBUPP/ywTNPU3/72NyuWAwAAAAAAPsqSoKJ379569tlntXTpUg0bNkxHjhyxYlkAAAAAAOBjLDlM85577pEkRUVF6aOPPtInn3yia6+9VrGxsSWeW2EYht5//30rSgQAAAAA+CJu/fA7hmmapqcXCQgIkGEYkqRLl8t/ryimacowDOXl5Xm0tvPpez06P1BRR+Pu83YJQCH79tXxdglAkbqd2OjtEoBCagVzkDzsKSPzZ2+X4Fa5/13p7RIKCb66t7dL8GmWdFR069atxFACAAAAAABAsiioSE5OtmIZAAAAAEAVY5qe7cKH9Sw5TBMAAAAAAKAsCCoAAAAAAIBtWLL1oyg7duyQw+FQZmamwsPDFR0drSuvvNJb5QAAAAAAfJHJrR/+xtKg4syZM3rllVf0wQcf6OTJk4U+r1Onju677z4999xzqlWrlpWlAQAAAAAAG7Bs68euXbt09dVXa+rUqcrIyJBpmoWejIwMvfbaa7rmmmv088/+dWUOAAAAAAAonSUdFdnZ2erbt6/27dsnSbrllls0ZMgQtW3bVuHh4crKytKOHTv0ySef6Msvv9Qvv/yivn37aseOHQoJCbGiRAAAAACAL3Ky9cPfWBJUzJw5Uw6HQ8HBwfrnP/+pwYMHFxpzww036N5779WiRYs0bNgwpaWlaebMmXrqqaesKBEAAAAAANiAJVs/Fi1aJMMw9OyzzxYZUlxq4MCBevbZZ2WaphYtWmRFeQAAAAAAwCYsCSp++uknSdJdd91VpvH541JTUz1WEwAAAADAD5hO+z2oFEuCirNnz0qS6tatW6bx+ePyvwcAAAAAAKoGS4KKyMhISdLOnTvLND6/k6JevXoeqwkAAAAA4AecefZ7UCmWBBWdO3eWaZqaPHlymcb/9a9/lWEY6tSpk4crAwAAAAAAdmJJUHHPPfdIkpYvX64777xTR44cKXLckSNHdOedd+qLL76QJN13331WlAcAAAAAAGzCkutJ+/btq6FDh2rhwoX67LPPtGTJEt14441q06aNwsLClJWVpR9//FHfffed8vIutsncdddd6t27txXlAQAAAAB8FYdX+h1LggpJmjNnjmrVqqXZs2fr/PnzWrdundatW1dgjGmakqSHHnpIb7zxhlWlAQAAAAAAm7Bk64ckVa9eXbNmzdIPP/ygxx57TFdffbUuu+wyBQQE6LLLLtM111yjxx9/XD/88INmzpyp6tWrW1UaAAAAAACwCcs6KvJdffXVmj59utXLAgAAAAD8kZOtH/7Gso4KAAAAAACA0ng9qMg/lwIAAAAAAMDyrR/ff/+93n//fa1fv14Oh0PZ2dkKDQ1VdHS0brrpJt1zzz26/vrr3bLWyZMnSx0T5paVAAAAAABewa0ffseyoCI7O1sPPPCAFixYIKlgJ8W5c+e0c+dOpaam6t1339WwYcM0e/ZshYaGVmrNiIiIUsf8enxPpdYAAAAAAADuY0lQ4XQ61a9fP61bt06maSooKEjdu3dXmzZtFBYWpqysLO3cuVPr1q1Tbm6u5s+fr4MHD2r16tUyDMOKEgEAAAAAgA1YElTMmjVLa9eulWEYGjFihKZNm6a6desWGnfixAk9+eSTmjdvnpKTkzVr1iw98sgjFV43IyOj9EF5pW8PAQAAAADYFLd++B1LDtOcO3euDMPQHXfcoblz5xYZUkhS3bp1lZiYqDvuuEOmaWrOnDmVWrdOnTqlPgAAAAAA+JqVK1cqPj5ejRs3VkhIiJo2baphw4Zp06ZNlZ7bNE0tWrRI/fv3V6NGjRQUFKQGDRro1ltvVWJioscvxTBMC67dqFWrls6ePatNmzapQ4cOpY7funWrOnbsqLCwMJ05c8ajtZ1P3+vR+YGKOhp3n7dLAArZt4+AF/bU7cRGb5cAFFIruIa3SwCKlJH5s7dLcKucb+d7u4RCQroM8+j8o0eP1vTp04v8LDAwUJMnT9aYMWMqNHdWVpaGDh2qZcuWFTvm5ptv1pIlS1SzZs0KrVEaSzoqAgMDJUnNmzcv0/jY2FhJUkCA129PBQAAAADYmdNpv8eDpk2b5gop4uLitHnzZh0/flzJycnq1KmT8vLyNHbsWC1atKhC848aNcoVUgwZMkSbN2/WiRMn9OOPP2rMmDEyDENr1qzRXXfd5baf6bcsSQJatGghSTp06FCZxuePa9mypcdqAgAAAADAl6Snp2vChAmSpJ49eyopKUkdO3ZUZGSkunfvrq+++kpXXHGFJOnpp5/Wr7/+Wq75v/76a3322WeSpLvvvlsfffSROnbsqIiICLVp00avvfaaXn/9dUlSUlKSli9f7r4f7hKWBBUjRoyQaZp65513yjT+7bffliQNHz7ck2UBAAAAAOAzEhMTlZmZKUmaMmVKoV0IoaGhmjRpkiTJ4XCUO0hYsGCBpIu7G1599dUix4wePVpRUVGSpDfeeKNc85eVJUHFo48+ql69eunNN9/UK6+8ory8vCLH5eXl6eWXX9Zbb72lXr166bHHHrOiPAAAAACAjzLNPNs9npKUlCRJiomJUceOHYscEx8fr5CQEEnSkiVLyjX/Dz/8IElq1aqVGjZsWOSYwMBAde3aVZL01Vdf6dSpU+VaoywsuZ503rx5GjJkiNLS0jR+/HjNnj1bt99+u1q3bq2wsDBlZWUpNTVVS5cu1aFDhxQTE6M//vGPmjdvXrFzJiQkWFE6AAAAAAC2kJKSIknq3LlzsWOCg4PVrl07bdiwQVu3bi3X/PmhQ2k3ZObf5HnhwgX95z//Uffu3cu1TmksCSpGjRolwzBcvz506JBmz55d7HiHw6EHH3yw2M8NwyCoAAAAAADY0smTJ0sdU1oY8FsHDx50bfvIv4CiOLGxsdqwYYN2794t0zQL/H28JLVq1ZJUev0ZGRmu16mpqb4ZVEhy6z2rFtyoCgAAAADwBR6+ZaMiIiIiSh1T3r/Xpqenu143aNCgxLH169eXJOXm5iorK0vh4eFlWqNt27ZKSUnRrl27dPTo0SLXycvL0zfffFNkXe5iyRkVTqfT7Q8AAAAAAFXF2bNnXa/zz6AoTmhoqOt1VlZWmdcYNGiQpIthxAsvvFDkmDfffFMHDhxw/Tq/y8OdLOuoAAAAAACgKrh0a4S7XNqBUdatHOXVv39/3XTTTVq/fr3ee+89nT17Vk8//bRiY2N15MgRzZkzR6+//rpCQkKUk5MjSYVuHnEHS4KK/OtR4uLidN1111mxJAAAAACgKjDt13Ff3vMnyiIsLMz1Ojs7u8Sxl35+6fdKYxiGPv30U912223asmWLFi5cqIULFxYYU6tWLU2ePFmPPPKIJKl27dplnr+sLNn6MXHiRE2cOFE1a9a0YjkAAAAAAPxKZGSk6/XRo0dLHHvs2DFJF28AKU9QIV08/+Lbb7/V22+/re7duysiIkLVq1dXs2bN9NBDD2n79u1q1qyZa/zvfve7cs1fFpZ0VNStW1cnTpwo9h5WAAAAAAAqpIqcYRgVFaXw8HBlZmZq7969JY5NS0uTJLVs2bJC20SCgoL04IMPFnsb55w5c1yvr7/++nLPXxpLOipatWolSdq/f78VywEAAAAA4Hfat28vSdq4cWOxY3Jzc5WSkiJJHjt6YcmSJZIuBiGXX3652+e3JKi46667ZJqmEhMTrVgOAAAAAAC/079/f0nS3r17tWXLliLHJCUluQ66jI+Pd3sNX3/9tSsIeeCBB9w+v2RRUPHggw+qR48e+sc//qF33nnHiiUBAAAAAFWB6bTf4yEJCQkKDw+XJI0bN07O32x7ycnJ0fjx4yVJ0dHR6tevn1vXP3DggO655x5JF7spHn30UbfOn8+SMyr++c9/6o9//KN+/vlnPfzww5o+fbr69eun2NhY1ahRo8TvJiQkWFEiAAAAAAC2FhkZqQkTJujpp5/WmjVrFB8fr/Hjxys6Olo7d+7UuHHjlJqaKkmaOnWqgoKCCnzf4XAoJiZGkjRy5MgCZ03ke/zxx5WVlaVBgwapRYsWqlevno4cOaIvvvhCU6ZM0YkTJ1SrVi0tWLBAISEhHvk5LQkqRo0aVeAAj9TUVNdvXkkMwyCoAAAAAADg/3vqqafkcDg0Y8YMLVu2TMuWLSvweUBAgKZMmaKBAwdWaP7MzEzNnTu3yBBDkpo3b66FCxd67PwLyaKgQpJM07TkOwAAAACAKqSK3PpxqenTpysuLk4zZ87U5s2blZGRofr166tr164aPXq0brjhhgrP/cADDyg8PFzr16/XgQMHdPr0aUVERKhNmzYaNGiQ7r33Xo91UuSzJKj47b4ZAAAAAABQcb1791bv3r3L9Z3o6OhSGwJuvPFG3XjjjZUprdIsOUwTAAAAAACgLCzb+gEAAAAAgNt58JYNeAcdFQAAAAAAwDbc3lGxb98+1+umTZsWeq+88ucAAAAAAAD+z+1BRf6drIZh6MKFCwXeK69L5wAAAAAAoBAub/A7bg8qijpBlGtGAQAAAABAWbg9qPj666/L9B4AAAAAAMBvuT2o6N69e5neAwAAAACg0tj64Xe49QMAAAAAANgGQQUAAAAAALANt2/9KMmvv/6qhQsXatWqVdq1a5dOnz5d4q0ehmFoz549FlYIAAAAAPApJls//I1lQcV///tfDRw4UGlpacXeAmIYRoHPDMOwqjwAAAAAAGADlgQVGRkZ6tOnj44cOaLmzZtr4MCBeu2112QYhv785z/r3Llz2r59u9atW6e8vDy1bdtWgwcPtqI0AAAAAABgI5YEFdOnT9eRI0fUunVrff/996pRo4Zee+01SdILL7ygGjVqSJL27dun+++/X6tXr1Z2drYmT55sRXkAAAAAAF/FrR9+x5LDNJcvXy7DMPTUU0+5QomiNG3aVF988YVuuOEGvfbaa1qxYoUV5QEAAAAAAJuwJKj43//+J0nq0qVLoc9+/fXXAr+uVq2aXnrpJZmmqbffftuK8gAAAAAAgE1YsvUjKytLktSgQQPXe6GhocrJydGZM2dUu3btAuM7dOggSfr++++tKA8AAAAA4Ku49cPvWNJRUatWLUnS6dOnXe9FRkZK+r9ui0udOXNGknTixAkLqgMAAAAAAHZhSVBxxRVXSJIOHz7seu/aa6+VJC1btqzQ+C+++EKSVKdOHc8XBwAAAADwXU6n/R5UiiVBRc+ePSVJ27Ztc703cOBAmaapt956S++++64yMzN16tQpzZ07Vy+88IIMw1CvXr2sKA8AAAAAANiEJUFFfHy8TNPUokWLXO8NHz5c7dq10/nz5/XQQw+pdu3aqlu3ru655x5lZmYqNDRUzz//vBXlAQAAAAAAm7DkMM2OHTtq8eLFCgwMdL0XGBiolStXasSIEVq5cmWB8bGxsfrwww/Vpk0bK8oDAAAAAPgqDtP0O5YEFZLUv3//Qu9FRkbq3//+t9LS0vTDDz8oNzdXsbGx6tChgwICLGn2AAAAAAAANmJZUFGSmJgYxcTEeLsMAAAAAADgZbYIKgAAAAAAqBBu2fA77K8AAAAAAAC2QVABAAAAAABsg60fAAAAAADfxdYPv0NHBQAAAAAAsA2CCgAAAAAAYBts/QAAAAAA+C7T9HYFcDM6KgAAAAAAgG0QVAAAAAAAANtg6wcAAAAAwHdx64ffoaMCAAAAAADYBkEFAAAAAACwDbZ+AAAAAAB8F1s//A4dFQAAAAAAwDYIKgAAAAAAgG2w9QMAAAAA4LtMtn74GzoqAAAAAACAbRBUAAAAAAAA22DrBwAAAADAd3Hrh9+howIAAAAAANgGHRUAAAAAAN9lmt6uAG5GRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPguDtP0O3RUAAAAAAAA2yCoAAAAAAAAtsHWDwAAAACA72Lrh9+p8kHF0bj7vF0CUKQGX7zn7RKAQmpPftLbJQBFuuKfTbxdAlBIbHA9b5cAAD6JrR8AAAAAAMA2qnxHBQAAAADAh5ls/fA3dFQAAAAAAADbIKgAAAAAAAC2wdYPAAAAAIDPMp2mt0uAm9FRAQAAAAAAbIOgAgAAAAAA2AZbPwAAAAAAvsvJrR/+ho4KAAAAAABgGwQVAAAAAADANtj6AQAAAADwXSZbP/wNHRUAAAAAAMA2CCoAAAAAAPAxK1euVHx8vBo3bqyQkBA1bdpUw4YN06ZNm9wyf1JSkgYNGqSmTZsqJCREoaGhiomJ0R//+EetXLnSLWsUh60fAAAAAADf5TS9XYHlRo8erenTpxd4b//+/VqwYIE+/vhjTZ48WWPGjKnQ3Lm5ufrjH/+oxYsXF/rM4XDI4XDo448/1tChQzV37lxVr169QuuUhI4KAAAAAAB8xLRp01whRVxcnDZv3qzjx48rOTlZnTp1Ul5ensaOHatFixZVaP6xY8e6QoquXbtq5cqVOnDggNLS0vTZZ5/pyiuvlCQtXLhQEydOdMvP9FuGaZpVL366xIEbenm7BKBIDb54z9slAIXkTn7S2yUARbrhn0e8XQJQSGxwPW+XABRp6b5l3i7Brc699Zi3SyikxqNvemTe9PR0xcbGKjMzUz179tTq1asVEPB//QfZ2dlq166ddu3apejoaO3atUtBQUFlnj8rK0v16tVTTk6O2rVrp40bNxb6fkZGhq6++modPHhQEREROn78eIEa3IGOCgAAAACA73I67fd4SGJiojIzMyVJU6ZMKRQQhIaGatKkSZIubtNYvnx5ueb/6aeflJOTI0m64447igw5IiIi1K9fP0kXQ4vjx4+X++coDUEFAAAAAAA+ICkpSZIUExOjjh07FjkmPj5eISEhkqQlS5aUa/7g4GDX68DAwGLH5X9WrVo1RURElGuNsiCoAAAAAAD4Lm93T1jYUZGSkiJJ6ty5c7FjgoOD1a5dO0nS1q1byzV/y5YtFR4eLkn6/PPPlZeXV2hMZmamVqxYIUm65ZZbOEwTAAAAAICq6ODBg65tH7GxsSWOzf989+7dKs+xlMHBwXr22WclSRs3blT//v21YcMGnTlzRhkZGVq9erVuvfVWORwONWrUSG+88UYFf5qScT0pAAAAAABudPLkyVLH1KlTp1xzpqenu143aNCgxLH169eXdPGq0aysLFeXRFk8++yzOn/+vF599VUtX7680DkXl112mR599FE999xzaty4cTl+grIjqAAAAAAA+C4bXmRZlnMbynsB59mzZ12v88+gKE5oaKjrdXmDCuliWBEVFaUnnnhC586dK1THwYMHdfjwYY8FFWz9AAAAAADA5i4NNgzD8Ng6aWlpat++ve677z716tVLX3/9tY4fP64jR45o2bJl6tixoxYvXqyuXbu6Dvd0NzoqAAAAAABwo4yMDLfPGRYW5nqdnZ1d4thLP7/0e6U5ffq0unfvrv3792vEiBFKTEws8HlcXJx+//vf65ZbbtG6des0fPhw7dmzR/Xq1SvzGmVBUAEAAAAA8F0evGWjosp7/kRZREZGul4fPXq0xLHHjh2TdPFwzPIEFe+99572798vSXrllVeKHFO9enVNmjRJPXr0UGZmpj7++GM99thjZV6jLNj6AQAAAACAzUVFRbnOmti7d2+JY9PS0iRdvG60PNtEvvnmG0kXD+Ns2rRpseM6duzoer1z584yz19WBBUAAAAAAPiA9u3bS7p4dWhxcnNzlZKSIkm67rrryjV//paR0g769PR5GQQVAAAAAADf5TTt93hI//79JV3sqNiyZUuRY5KSkpSTkyNJio+PL9f8+bd4HD9+XL/88kux477//nvX62bNmpVrjbIgqAAAAAAAwAckJCS4tn+MGzdOzt+cz5GTk6Px48dLkqKjo9WvX79yzX/rrbe6Xr/wwgtFjjl//rxeeukl16/79OlTrjXKgqACAAAAAAAfEBkZqQkTJkiS1qxZo/j4eG3ZskXp6elat26devXqpdTUVEnS1KlTFRQUVOD7DodDhmHIMAyNGjWq0Px33nmn2rZtK0maN2+e+vfvr+TkZJ04cULHjh3T8uXL1b17d9dZFnfeeaeuvvpqt/+c3PoBAAAAAPBdpv1u/fCkp556Sg6HQzNmzNCyZcu0bNmyAp8HBARoypQpGjhwYLnnrlatmr744gvddttt2rFjh5YuXaqlS5cWObZ37956//33K/QzlIaOCgAAAAAAfMj06dO1YsUK9e/fXw0bNlRQUJCaNGmioUOH6rvvvtOYMWMqPHezZs20ZcsWvffee+rbt68aNWqkoKAgBQcHq2nTpho0aJA+//xz/fvf/y7X1aflQUcFAAAAAAA+pnfv3urdu3e5vhMdHV3qjR6SFBwcrHvvvVf33ntvRcurFIIKAAAAAIDv8uAtG/AOtn4AAAAAAADbIKgAAAAAAAC2wdYPAAAAAIDPMp1V69aPqoCOCgAAAAAAYBsEFQAAAAAAwDbY+gEAAAAA8F3c+uF36KgAAAAAAAC24fGgIiYmRs2bN1dOTk6ZxjudTtd3AAAAAABA1eLxrR+//PKLDMOQs4wnsZqm6foOAAAAAAAlMrn1w9/YdusHQQUAAAAAAFWP7Q7TzMjIkCTVqFHDy5UAAAAAAGyPwzT9jmUdFWXpkHA6nZo5c6YkKTY21tMlAQAAAAAAm3F7R0VxAUObNm1KDCvy8vJ0/Phx5ebmyjAM3X777e4uDQAAAAAA2JzbgwqHw1HovfwDMsuqR48eGjdunBurAgAAAAD4pTJe3ADf4fagYvz48QV+PXHiRBmGoXHjxikoKKjY71WvXl2RkZHq0KGD2rdv7+6yAAAAAACAD7AkqJCk559/ngMyAQAAAABAiTx+68fXX38tSQoNDfX0UgAAAACAqoZbP/yOx4OK7t27e3oJAAAAAADgJyy7nhQAAAAAAKA0Hu+oyHfq1Cl98skn2rx5s44cOaJz587JNItv0TEMQ2vWrLGqPAAAAACALzK59cPfWBJULFy4UA8//LAyMzMlqcSAIp9hGJ4uCwAAAAAA2IzHg4r169drxIgRcv7/u22vvPJKtW7dmhtAAAAAAABAIR4PKqZMmSKn06moqCh9/vnn6tChg6eXBAAAAABUFdz64Xc8fpjmxo0bZRiG3njjDUIKAAAAAABQIo8HFVlZWZK4phQAAAAAAJTO41s/GjduLIfDofPnz3t6KQAAAABAFWM6ufXD33i8o6JPnz6SpO+++87TSwEAAAAAAB/n8aDimWeeUa1atTRhwgSdO3fO08sBAAAAAAAf5vGgolmzZkpKStLhw4fVpUsXrV69Wnl5eZ5eFgAAAABQFThN+z2oFLeeUREbG1vsZ06nU//973/Vu3dvBQcHKzIyUtWqFb+8YRjas2ePO8sDAAAAAAA259agwuFwlGlcTk6ODhw4UOIYwzDcUBEAAAAAAPAlbg0qxo8f787pAAAAAAAoGVst/A5BBQAAAAAAsA23BhUAAAAAAFjKdHq7AriZx2/9AAAAAAAAKCuCCgAAAAAAYBse3/rRq1evcn+nWrVqqlWrlpo0aaLrrrtO8fHxqlWrlgeqAwAAAAD4NA7T9DseDyqSk5Ndry+9ctQ0zTK/HxISorFjx+rFF19UYGBgmdc+efJkRUoGAAAAAABe4vGgIiEhQYZh6JtvvtHevXslSa1atVKrVq0UFhamrKws7dq1S6mpqZKk2NhY3XTTTcrKytL//vc/bd++XdnZ2Xr55Ze1d+9eJSYmlnntiIiIUsfsv75nxX4wAAAAAADgdh4/o2LOnDmKjY1VWlqa+vXrp127dmnnzp1atGiREhMTtWjRIv3444/avXu3brvtNqWlpSk2NlaffvqpfvjhB/3vf/9T3759ZZqm5s+fry+//NLTJQMAAAAAfITpNG33oHI8HlR8+eWXGj9+vPr27aulS5eqRYsWRY67/PLLtWTJEvXt21cTJ07UihUrJEkxMTFKSkpSp06dJEnvv/9+mdfOyMgo9QEAAAAAAPbh8aDijTfekGEYev755wucRVEUwzD03HPPyTRNzZgxw/V+YGCgnnnmGZmmqU2bNpV57Tp16pT6AAAAAAAA+/D4GRVbt26VdPFcirJo3bp1ge/lu/766yVJx44dc2N1AAAAAACfxlYLv+PxjorTp09Lkk6cOFGm8fnjzpw5U+D9mjVrSrp4dSkAAAAAAPBPHg8qmjZtKklasGBBmcbnj2vSpEmB9w8fPixJql+/vhurAwAAAAAAduLxoCI+Pl6maerVV1/VvHnzShy7YMECvfrqqzIMQwMGDCjw2fr16yVJzZs391SpAAAAAABf43Ta70GleHwfxbPPPqv58+fr8OHDGjlypN544w3Fx8erVatWqlmzps6ePatdu3ZpyZIl2rp1q0zTVKNGjfTss88WmCf/to9bbrnF0yUDAAAAAAAv8XhQUadOHX311Ve67bbbtGfPHqWkpCglJaXQONO8eABK8+bNtXTp0gI3cpw8eVKDBw/W4MGDNWTIEE+XDAAAAAAAvMSSkymvuOIKbd++XTNmzNDcuXO1c+fOQmPatGmjkSNH6rHHHlNoaGiBz+rUqaOnn37ailIBAAAAAL6EWz/8jmVXaISEhGjs2LEaO3asTp06pV9++UVZWVkKCwtTs2bNVLt2batKAQAAAAAANuWVuz5r165NMAEAAAAAAArxSlABAAAAAIBbsPXD73j8elIAAAAAAICycmtHRa9evSRJhmFozZo1Bd4rr0vnAAAAAAAAVYNbg4rk5GRJF0OGS98zDMN1/WhZXToHAAAAAABFKe/fNWF/bg0qRo4cWei9hIQEQgcAAAAAAFAmbg0qPvzww0LvzZkzx51LAAAAAAAAP8atHwAAAAAA38WtH36HWz8AAAAAAIBt0FEBAAAAAPBddFT4HbcGFYmJie6cTgkJCW6dDwAAAAAA2Jtbg4pRo0a57YYPwzAIKgAAAAAAqGLcvvXDXXfYchcuAAAAAKA0Jls//I5bgwqn0+nO6QAAAAAAQBXj1ls/IiIiVLduXWVnZ7veW7dundatW0eHBAAAAAAAbrJy5UrFx8ercePGCgkJUdOmTTVs2DBt2rSpwnPOmTNHhmGU63E4HO77of4/t3ZUnDp1SoZhFAglevTooYCAAJ05c0Y1atRw53IAAAAAgKquCm79GD16tKZPn17gvf3792vBggX6+OOPNXnyZI0ZM8bjddStW1eNGzd2+7xu7agIDAyUJF24cKHA+3RTAAAAAABQedOmTXOFFHFxcdq8ebOOHz+u5ORkderUSXl5eRo7dqwWLVpU7rmHDx+uzMzMEp+1a9e6xg8dOlRBQUFu+9nyuTWoqFOnjiQpLS3NndMCAAAAAFDlpaena8KECZKknj17KikpSR07dlRkZKS6d++ur776SldccYUk6emnn9avv/5arvmrVaumsLCwEp9PP/3UNX7kyJFu+9kK1OHOydq1a6fVq1fr8ccf19ixY3XZZZe5Plu/fr1CQkLKNV+3bt3cWR4AAAAAwN9UoTsdEhMTlZmZKUmaMmWKAgIK9h6EhoZq0qRJGjJkiBwOh5YvX64BAwa4bf3z58/ro48+kiS1bdtWHTp0cNvcl3JrUPHwww9r1apV+vbbb/Xtt9+63jdNU3379i3XXIZhFNpCAgAAAABAVZWUlCRJiomJUceOHYscEx8fr5CQEOXk5GjJkiVuDSqWL1+u48ePS/JcN4Xk5q0fAwYM0KxZs9SoUSOZplngbIr8X5fnAQAAAAAAF6WkpEiSOnfuXOyY4OBgtWvXTpK0detWt64/d+5cSRfPpxw+fLhb576UWzsqJOnBBx/Ugw8+qPT0dJ09e1YxMTEyDEM7duzg1g8AAAAAgFuZNrz14+TJk6WOyT/jsawOHjzo2vYRGxtb4tjY2Fht2LBBu3fvlmmaMgyjXGsVJSMjQ1988YUk6dZbb1WjRo0qPWdx3B5U5IuMjFRkZKTr182aNSOoAAAAAAD4vYiIiFLHlHcXQXp6uut1gwYNShxbv359SVJubq6ysrIUHh5errWKsnDhQtfhnKNGjar0fCXxWFCR78MPP5Skch+kCQAAAAAALjp79qzrdWl/vw4NDXW9dldQkb/t47LLLlN8fHyl5yuJx4MKTx6wAQAAAACo4my49SMjI8Ptc17ageGOrRzl8dNPP+n777+XJA0ZMsTjjQgeDyoAAAAAAKhKynv+RFmEhYW5XmdnZ5c49tLPL/1eReV3U0ie3/YhufnWDwAAAAAA4H6XngF59OjREsceO3ZM0sUbQCobVDidTs2bN0+S1KJFixJvHHEXOioAAAAAAL7L6e0CrBEVFaXw8HBlZmZq7969JY5NS0uTJLVs2bLS20TWrFmjAwcOSLLuaAc6KgAAAAAA8AHt27eXJG3cuLHYMbm5uUpJSZEkXXfddZVeMzExUZIUEBCghISESs9XFgQVAAAAAAD4gP79+0uS9u7dqy1bthQ5JikpSTk5OZJU6ds5srKytGjRIklSz5499bvf/a5S85UVQQUAAAAAwGeZTtN2j6ckJCS4rhodN26cnM6C+15ycnI0fvx4SVJ0dLT69etXqfU++eQTnTt3TpK1N3oSVAAAAAAA4AMiIyM1YcIESRfPjoiPj9eWLVuUnp6udevWqVevXkpNTZUkTZ06VUFBQQW+73A4ZBiGDMMo0+0d+ds+wsLCNGjQILf+LCXhME0AAAAAAHzEU089JYfDoRkzZmjZsmVatmxZgc8DAgI0ZcoUDRw4sFLr/PLLL1q7dq0k6Y477lCNGjUqNV950FEBAAAAAPBdThs+HjZ9+nStWLFC/fv3V8OGDRUUFKQmTZpo6NCh+u677zRmzJhKr5GYmCjTvLiNxcptHxIdFQAAAAAA+JzevXurd+/e5fpOdHS0K3wozYsvvqgXX3yxIqVVGkEFAAAAAMBnefLwSngHWz8AAAAAAIBtEFQAAAAAAADbYOsHAAAAAMB3WXB4JaxFRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPgsk60ffoeOCgAAAAAAYBsEFQAAAAAAwDbY+gEAAAAA8F1s/fA7dFQAAAAAAADbIKgAAAAAAAC2wdYPAAAAAIDP4tYP/0NHBQAAAAAAsA2CCgAAAAAAYBts/QAAAAAA+C62fvgdOioAAAAAAIBtEFQAAAAAAADbYOsHAAAAAMBnceuH/6GjAgAAAAAA2AZBBQAAAAAAsA22fgAAAAAAfBZbP/wPHRUAAAAAAMA2CCoAAAAAAIBtsPUDAAAAAOCz2Prhf+ioAAAAAAAAtkFHBQAAAADAd5mGtyuAm9FRAQAAAAAAbKPKd1Ts21fH2yUARao9+UlvlwAUEjzu794uAShS9pxB3i4BKCTTmePtEgDAJ1X5oAIAAAAA4Ls4TNP/sPUDAAAAAADYBkEFAAAAAACwDbZ+AAAAAAB8lunk1g9/Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4LG798D90VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgM8yTW798Dd0VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgM/i1g//Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4LNPJrR/+ho4KAAAAAABgGwQVAAAAAADANtj6AQAAAADwWabp7QrgbnRUAAAAAAAA2yCoAAAAAAAAtsHWDwAAAACAz+LWD/9DRwUAAAAAALANOioAAAAAAD6Ljgr/Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4LNP0dgVwNzoqAAAAAACAbRBUAAAAAAAA22DrBwAAAADAZ3Hrh/+howIAAAAAANgGQQUAAAAAALANtn4AAAAAAHyWabL1w9/QUQEAAAAAAGyDoAIAAAAAANgGQQUAAAAAwGeZTvs9Vli5cqXi4+PVuHFjhYSEqGnTpho2bJg2bdrktjUyMzM1bdo0devWTQ0bNlRwcLCioqLUpUsXjRs3Tjt27HDbWpfijAoAAAAAAHzI6NGjNX369ALv7d+/XwsWLNDHH3+syZMna8yYMZVa46uvvlJCQoIOHjxY4P1Dhw7p0KFD+u677xQSEqIrr7yyUusUhY4KAAAAAAB8xLRp01whRVxcnDZv3qzjx48rOTlZnTp1Ul5ensaOHatFixZVeI2vv/5acXFxOnjwoKKiovTmm29q165dysjI0N69e/Wvf/1LAwYMUHBwsLt+rAIM0zRNj8zsI75rNMjbJQBFunrYBW+XABQSPO7v3i4BKNIVrfj3OeynaUhdb5cAFCn5wGpvl+BWu1v38XYJhbRMXeGRedPT0xUbG6vMzEz17NlTq1evVkDA//UfZGdnq127dtq1a5eio6O1a9cuBQUFlWuN06dPq02bNjp06JCuueYaff3116pTp467f5QS0VEBAAAAAIAPSExMVGZmpiRpypQpBUIKSQoNDdWkSZMkSQ6HQ8uXLy/3Gn/729906NAhVatWTfPnz7c8pJAIKgAAAAAA8AlJSUmSpJiYGHXs2LHIMfHx8QoJCZEkLVmypFzzX7hwQR988IEkqV+/fmrbtm0lqq04rx2meebMGW3dulXHjx9XTk6OEhISvFUKAAAAAMBHmabh7RIsk5KSIknq3LlzsWOCg4PVrl07bdiwQVu3bi33/EeOHJF0MfC41Pnz51W9evVyVlwxlndUpKamKj4+XnXr1tUtt9yioUOH6u677y4wZvfu3br66qt1/fXX6/z581aXCAAAAACArRw8eNC17SM2NrbEsfmf7969W+U5lvL77793ve7YsaO2bdumO+64Q7Vr11ZQUJBq1Kihbt266f3339eFC547U8/SjooVK1Zo8ODBys7OLvCbZRgFE7CWLVsqODhYW7du1apVq9SvXz8rywQAAAAAoMJOnjxZ6pjynv2Qnp7uet2gQYMSx9avX1+SlJubq6ysLIWHh5dpjX379rler1+/XqNHjy7QPJCdna1vvvlG33zzjebPn68lS5aUee7ysKyj4uDBg7rzzjt17tw5de3aVWvXrtXRo0eLHT9kyBCZpqnFixdbVSIAAAAAwMeYTsN2T0RERKlPeZ09e9b1Ov8MiuKEhoa6XmdlZZV5jdOnT7tejx49WtWqVdM//vEPHT58WDk5OUpJSVH//v0lXbzC9P777y/z3OVhWVAxdepUZWVlqUuXLlq9erW6du2qGjVqFDv+xhtvlCRt2rTJqhIBAAAAALClknYluIvT6XS9Pn/+vD7++GONHj1aDRs2dJ19sXjxYsXFxUmSPv74Y23bts3tdVi29WPlypUyDEMvvfSSqlUrfdn8PTWXtp4AAAAAAGB3GRkZbp8zLCzM9To7O7vEsZd+fun3yrPG9ddfr9tvv73QGMMwNGnSJH3xxReSpMWLF6tdu3ZlXqMsLAsqfvnlF0nSddddV6bx+a0ql7a3AAAAAABwqXKcFWmZ8p4/URaRkZGu1yUdoyBJx44dk3TxBpDyBBX16tVzve7atWux49q1a6eaNWvq7Nmz+vHHH8s8f1lZtvUjvzXl0laSkpw4cUKSPHIwBwAAAAAAviQqKsr19+O9e/eWODYtLU3SxYsqyrNNpHXr1q7XJYUthmGodu3akqQzZ86Uef6ysiyoaNy4sSRpx44dZRr/zTffSCr92hUAAAAAQNXl7YMzi3o8pX379pKkjRs3FjsmNzdXKSkpksq+oyFfhw4dXK/zmweK4nQ6XTeb5AcW7mRZUNG9e3eZpql33nmn1LG//vqrpk6dKsMwdPPNN1tQHQAAAAAA9pZ/48bevXu1ZcuWIsckJSUpJydHkhQfH1+u+Zs0aaKOHTtKkpKTk4sd9/333+vcuXOS5PbzKSQLg4pHH31UhmHo448/1tSpU4sdd+rUKd15553asWOHAgMD9fDDD1tVIgAAAAAAtpWQkODa/jFu3LhCRyvk5ORo/PjxkqTo6Gj169ev3GuMHj1akrRt2zb961//KvR5Xl6eXnjhBUlSYGCg7rjjjnKvURrLgoprrrlGY8aMkWmaeuaZZ3TNNdfopZdecn0+ffp0jRo1SjExMVq6dKkMw9DEiRPVrFkzq0oEAAAAAPgYp2nY7vGUyMhITZgwQZK0Zs0axcfHa8uWLUpPT9e6devUq1cvpaamSpKmTp2qoKCgAt93OBwyDEOGYWjUqFFFrnHXXXepe/fukqQRI0boL3/5i/bs2aOMjAytX79effv21erVqyVJf/rTn3T55Ze7/ec0TNPaM1LHjRun1157TaZpFnmoR345zz//vF5++WWP1/Ndo0EeXwOoiKuHXfB2CUAhweP+7u0SgCJd0Yp/n8N+mobU9XYJQJGSD6z2dglutSP2Nm+XUMiVe5d5dP4nnnhCM2bMKPKzgIAATZkyRWPGjCn0mcPhUExMjCRp5MiRmjNnTpFznDx5Uv369SvxLIx77rlHs2fPVrVq7r9M1LKOinyTJ0/W1q1blZCQoEaNGsk0TdcTERGhoUOH6vvvv7ckpAAAAAAAwNdMnz5dK1asUP/+/dWwYUMFBQWpSZMmGjp0qL777rsiQ4ryqFOnjtavX6/Zs2erW7duqlu3rqpXr67GjRtr8ODBWrVqld5//32PhBSSFzoqfuvs2bM6ffq0wsLCVKtWLcvXp6MCdkVHBeyIjgrYFR0VsCM6KmBX/tZRsT3mdm+XUMhVaUu9XYJP80z8UQ41a9ZUzZo1vV0GAAAAAACwAcu3fgAAAAAAABTHax0VTqdTJ0+e1Llz51Ta7pOmTZtaVBUAAAAAwJd49zADeILlQcUHH3yg999/XykpKfr1119LHW8Yhi5cYK8+AAAAAABVgWVBxYULFzRgwAD9+9//lqRSuygAAAAAAEDVY1lQMWPGDC1fvlySdPXVVyshIUGtW7dWjRo1rCoBAAAAAOBnnKbh7RLgZpYFFf/85z9lGIb69++vzz77TAEBnOMJAAAAAAAKsiwt2L17tyRpwoQJhBQAAAAAAKBIlnVUVKt2cano6GirlgQAAAAA+DmTrR9+x7LWhpYtW0qSjh49atWSAAAAAADAx1gWVIwYMUKmaerTTz+1akkAAAAAAOBjLAsqHnnkEd1000169dVXtXbtWquWBQAAAAD4MdO034PKseyMim+//Vbjxo3T6NGjdeutt+rOO+9Unz591LhxY9f5FcXp1q2bRVUCAAAAAABvsiyo6NGjhwzj4iEnpmlq4cKFWrhwYanfMwxDFy5c8HR5AAAAAADABiwLKqSLAUVRrwEAAAAAqAgnt374HcuCirS0NKuWcjl58qTlawIAAAAAgIqzLKho1qyZVUu5RERElDrm24YDLagEAAAAAACUhaVbPwAAAAAAcCeTrR9+x6+DioyMjFLHpLa5z4JKAAAAAABAWXg1qDh79qxOnz5d6q0eTZs2rdD8derUqdD3AAAAAAC+gcM0/Y/lQcWPP/6o119/XatWrdLhw4dLHc/1pAAAAAAAVB2WBhXz5s3T/fffr19//ZXrSQEAAAAAQCGWBRU//fST7r33Xl24cEFDhgzRiBEjFBcXJ8MwtGzZMuXm5mr79u1asGCBdu3apbZt2+r1119XSEiIVSUCAAAAAHwM/wnc/1gWVLzxxhs6f/68br31Vi1YsKDAZ927d1eNGjU0YMAAvfDCC5o4caImTZqkKVOmaM2aNVaVCAAAAAAAvCzAqoWSk5NlGIYee+yxEscZhqEJEyYoISFBa9eu1dtvv21RhQAAAAAAwNssCyoOHDggSWrbtq3rPcO4eDprbm5uofGPPfaYTNPU/PnzrSkQAAAAAOBznKZhuweVY1lQ8euvv0oqeGVozZo1JUnp6emFxsfGxkqSdu3aZUF1AAAAAADADiwLKurVqydJOn78uOu9qKgoSRevLP2t/KtLMzMzLagOAAAAAADYgWVBxZVXXilJOnTokOu9G264QaZpau7cuYXGv/vuu5KkJk2aWFMgAAAAAMDnmKZhuweVY1lQ0adPH0nSunXrXO+NHDlSkpSUlKRhw4Zp6dKlWrx4se6++27NmDFDhmFowIABVpUIAAAAAAC8zLKgon///jJNU4sWLXK917NnT40cOVKmaeqjjz7SgAEDNGjQICUmJso0TcXExOj555+3qkQAAAAAAOBl1axaKDY2VqdOnSr0/vvvv69WrVpp5syZ2r9/vyQpLCxMgwYN0pQpUwocvgkAAAAAwKWc3i4AbmdZUCFJtWrVKvReQECA/vznP+vPf/6zTp48qdzcXNWvX18BAZY1ewAAAAAAAJuwNKgoDd0TAAAAAABUbbYKKgAAAAAAKA9T3LLhb9hfAQAAAAAAbMMjHRW9evVy21yGYWjNmjVumw8AAAAAANiXR4KK5ORkGYYh0zQrPZdh0MYDAAAAACias/J/7YTNeCSoSEhIIGAAAAAAAADl5pGgYs6cOZ6YFgAAAAAA+Dlu/QAAAAAA+Cwnt374Ha8FFRcuXNAPP/wgh8OhzMxMhYeHKzo6Wtdee62qVSM/AQAAAACgKrI8ETh+/LgmTJigefPmKSsrq9DnYWFhGjFihMaPH6969epZXR4AAAAAAPCiACsX27Bhg9q0aaO3335bmZmZMk2z0JOZmalZs2apbdu22rRpk5XlAQAAAAB8jCnDdg8qx7KOioMHD6pv3746c+aMDMPQwIEDNWjQILVp00ZhYWHKysrSzp079dlnn+nzzz9Xenq6+vbtqx07dqhx48ZWlQkAAAAAALzIsqDi1Vdf1ZkzZxQWFqbPP/9cN998c6Ex11xzjYYOHao1a9boD3/4g06fPq1XX31Vb775plVlAgAAAAB8iNPbBcDtLNv6sXz5chmGoYkTJxYZUlzq5ptv1oQJE2SappYvX25RhQAAAAAAwNssCyqOHDkiSRo4cGCZxg8ePFiSdPjwYY/VBAAAAAAA7MWyoCIiIkLSxVs9yqJmzZoFvgcAAAAAwG95++BMDtN0P8uCik6dOkmSUlJSyjR+y5YtBb4HAAAAAAD8n2VBxVNPPaWAgAA999xzOnfuXIljs7Oz9fzzzyswMFBPPvmkRRUCAAAAAABvsyyo6NKli2bNmqXt27frxhtv1MqVK2WaZoExpmlqxYoV6ty5s3bs2KGZM2fqpptusqpEAAAAAICPcdrwQeVYdj1pr169JEn16tXTf//7X/Xr1081a9ZUixYtFBYWpqysLP388886e/asJCkqKkoLFy7UwoULi5zPMAytWbPGqvIBAAAAAIAFLAsqkpOTZRiGq4vCNE1lZWVp27ZtRY4/cOCADhw4UOx8hsEBJQAAAAAA+BvLgoqEhATCBQAAAACAW7HVwv9YFlTMmTPHqqUAAAAAAICPsuwwTQAAAAAAgNJY1lEBAAAAAIC7meKIAX9DRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPgsJzs//A4dFQAAAAAAwDYIKgAAAAAAgG2w9QMAAAAA4LOc3Prhd+ioAAAAAAAAtkFQAQAAAACAj1m5cqXi4+PVuHFjhYSEqGnTpho2bJg2bdpUqXlHjRolwzBKfW677TY3/SSFEVQAAAAAAHyWacPH00aPHq0+ffooKSlJhw8fVm5urvbv368FCxaoS5cuev311y2ownMIKgAAAAAA8BHTpk3T9OnTJUlxcXHavHmzjh8/ruTkZHXq1El5eXkaO3asFi1aVKl1brrpJmVmZhb7fPrpp+74cYrEYZoAAAAAAPiA9PR0TZgwQZLUs2dPJSUlKSDgYv9B9+7d9dVXX6ldu3batWuXnn76ad12220KCgqq0FqBgYEKCwtzV+nlQkcFAAAAAMBnOW34eEpiYqIyMzMlSVOmTHGFFPlCQ0M1adIkSZLD4dDy5cs9WI3nEFQAAAAAAOADkpKSJEkxMTHq2LFjkWPi4+MVEhIiSVqyZIlltbkTQQUAAAAAwGc5DcN2j6ekpKRIkjp37lzsmODgYLVr106StHXr1kqv6XQ6deHChUrPUx4EFQAAAAAAuNHJkydLfcrr4MGDrm0fsbGxJY7N/3z37t0yzYrdQ7J9+3Zdfvnlql69uqpXr666deuqb9++mjdvnseDCw7TBAAAAADAjSIiIkodU94AIT093fW6QYMGJY6tX7++JCk3N1dZWVkKDw8v11qSlJGRoYyMjAK/XrFihVasWKHp06dr0aJFatKkSbnnLQs6KgAAAAAAPsu04eMJZ8+edb3OP4OiOKGhoa7XWVlZ5VqnQYMGGjt2rNasWaO0tDTl5OToxIkTWr58uW6++WZJ0vfff6/evXsXqMmd6KgAAAAAAMCNLu1EcJdLOzAMD56DMWXKlELvBQcHq2/fvurTp4+eeOIJvfnmm9q5c6f+/ve/64UXXnB7DXRUAAAAAADgRnXq1Cn1Ka+wsDDX6+zs7BLHXvr5pd+rLMMwNHXqVEVFRUmS5s2b57a5L0VQAQAAAADwWU4bPp4QGRnpen306NESxx47dkzSxU4IdwYVkhQUFKS+fftKknbt2qVz5865dX6JoAIAAAAAANuLiopyHYq5d+/eEsempaVJklq2bOmRbSL5h3VK0qlTp9w+P0EFAAAAAAA+oH379pKkjRs3FjsmNzdXKSkpkqTrrrvOI3UcOXLE9boi21hKQ1ABAAAAAPBZTsN+j6f0799f0sWOii1bthQ5JikpSTk5OZKk+Ph4t9eQk5Ojf//735KkVq1aFbhhxF0IKgAAAAAA8AEJCQmu7R/jxo2T01nwRIycnByNHz9ekhQdHa1+/fqVa/4jR44oLy+v2M+dTqeeeOIJHT58WJI0fPjwcs1fVgQVAAAAAAD4gMjISE2YMEGStGbNGsXHx2vLli1KT0/XunXr1KtXL6WmpkqSpk6dqqCgoALfdzgcMgxDhmFo1KhRheb/6KOP1KJFC7344otas2aN9u/fr9OnT2v//v367LPP1K1bN7377ruSpCuvvFJPPvmkR37Oah6ZFQAAAAAACzjlwb0WNvTUU0/J4XBoxowZWrZsmZYtW1bg84CAAE2ZMkUDBw6s0PxpaWl65ZVX9MorrxQ7pnv37lq4cKFq1KhRoTVKQ1ABAAAAAIAPmT59uuLi4jRz5kxt3rxZGRkZql+/vrp27arRo0frhhtuqNC8f/jDH2SapjZs2KAff/xRx48f18mTJxUSEqJGjRrp+uuv19ChQ9WvXz+P3CaSj6ACAAAAAAAf07t3b/Xu3btc34mOjpZpmsV+3qxZMz355JMe29JRVgQVAAAAAACfVfxfu+GrOEwTAAAAAADYBkEFAAAAAACwDbZ+AAAAAAB8lrNqXfpRJVT5oKLbiY3eLgEo0hX/bOLtEoBCsucM8nYJQJF2/fSZt0sACjk7+j5vlwAAPomtHwAAAAAAwDaqfEcFAAAAAMB3Ob1dANyOjgoAAAAAAGAbdFQAAAAAAHyW6e0C4HZ0VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgM9yGt6uAO5GRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPgsp7cLgNvRUQEAAAAAAGyDoAIAAAAAANgGWz8AAAAAAD6LrR/+xytBxbZt2zR//nx9//33On78uHJzc7Vnzx7X50eOHNF3332n4OBgxcXFeaNEAAAAAADgBZYGFTk5OXr44YeVmJgoSTJNU5JkGAUvvq1Zs6buvvtunT17Vj///LNiYmKsLBMAAAAAAHiJpWdUDBkyRImJiTJNUz169NCf/vSnIseFh4dr0KBBMk1TixYtsrJEAAAAAIAPMQ37Pagcy4KKf/3rX1q6dKlCQkK0YsUKrVmzRi+//HKx4+Pi4mSaplauXGlViQAAAAAAwMssCyrmzJkjwzD0wgsv6Pe//32p46+++mpJUmpqqqdLAwAAAAAANmHZGRVbt26VJN1xxx1lGh8ZGSlJSk9P91hNAAAAAADfxq0f/seyjopTp05JkurVq1em8RcuXJBU+KBNAAAAAADgvywLKmrXri1JOn78eJnG//zzz5LKHmwAAAAAAADfZ1lQcdVVV0mSVq1aVabxH330kSSpY8eOHqsJAAAAAODbnDZ8UDmWBRUDBgyQaZr6y1/+Uuq5E+vWrdPs2bNlGIYGDx5sUYUAAAAAAMDbLAsq7r//fkVHR+vw4cPq1KmTFi1apHPnzhUY43A49NJLL6lPnz66cOGCrrrqKg0ZMsSqEgEAAAAAgJdZdutHcHCwli5dqh49emjv3r264447ZBiG67DMiIgInT59WpJkmqYaNGigzz77jMM0AQAAAADFMr1dANzOso4KSWrbtq1++OEH9e/fX5LkdDplmqZM09SpU6dcr2+77TZt2bJFzZs3t7I8AAAAAADgZZZ1VOSLiorS4sWL5XA4tHr1au3atUunT59WWFiYmjdvrt///vdq0aKF1WUBAAAAAAAbsDyoyBcdHa377rvPW8sDAAAAAPyAk9MC/I6lWz8AAAAAAABK4rWOCgAAAAAAKsvp7QLgdh4JKhITE906X0JCglvnAwAAAAAA9uSRoGLUqFFuu1bUMAyCCgAAAAAAqgiPbf0wTffcZuuueQAAAAAA/oetH/7HI0GF08kfFQAAAAAAUH7c+gEAAAAAAGyDWz8AAAAAAD6LwwL8jy06KjiHAgAAAAAASF4KKr7//ns99NBDuvLKKxUWFqZq1aopLCxMV155pR566CFt3rzZG2UBAAAAAAAvs3TrR3Z2th544AEtWLBAUsFOinPnzmnnzp1KTU3Vu+++q2HDhmn27NkKDQ21skQAAAAAgA9xGt6uAO5mWVDhdDrVr18/rVu3TqZpKigoSN27d1ebNm0UFhamrKws7dy5U+vWrVNubq7mz5+vgwcPavXq1TIM/uQBAAAAAFAVWBZUzJo1S2vXrpVhGBoxYoSmTZumunXrFhp34sQJPfnkk5o3b56Sk5M1a9YsPfLII1aVCQAAAAAAvMiyMyrmzp0rwzB0xx13aO7cuUWGFJJUt25dJSYm6o477pBpmpozZ45VJQIAAAAAfIzThg8qx7Kg4qeffpIkjRkzpkzjn3nmmQLfAwAAAAAA/s+yoCIwMFCS1Lx58zKNj42NlSQFBNjiBlUAAAAAAGABy1KAFi1aSJIOHTpUpvH541q2bOmxmgAAAAAAvs204YPKsSyoGDFihEzT1DvvvFOm8W+//bYkafjw4Z4sCwAAAAAA2IhlQcWjjz6qXr166c0339Qrr7yivLy8Isfl5eXp5Zdf1ltvvaVevXrpscces6pEAAAAAADgZZZdTzpv3jwNGTJEaWlpGj9+vGbPnq3bb79drVu3VlhYmLKyspSamqqlS5fq0KFDiomJ0R//+EfNmzev2DkTEhKsKh8AAAAAYENONlv4HcM0TUv+Vw0ICJBhGG6bzzAMXbhwodLzVAuKckM1gPtdUaeJt0sACsnO+9XbJQBF2vXTZ94uASjk7Oj7vF0CUKTa87/ydglu9Zdmw7xdQiHP/zLf2yX4NMs6KiTJnZmIRfkKAAAAAACwkGVBhdPptGopAAAAAEAVwd80/Y9lh2kCAAAAAACUhqACAAAAAADYhqVnVBQlPT1dmZmZCg8PV2RkpLfLAQAAAAD4EE4v9D9e6aj45JNP1KdPH1122WVq0KCBLr/8cjVo0ECXXXaZ+vTpo08//dQbZQEAAAAAAC+ztKMiPT1dgwYN0vr16yUVvrkjMzNTq1at0qpVq9S1a1d98sknqlevnpUlAgAAAAB8CIdp+h/LgoqcnBz17NlTO3fulGmaatiwoW6//Xa1adNGYWFhysrK0s6dO7V06VIdOXJE33zzjW655RZt3rxZwcHBVpUJAAAAAAC8yLKgYtq0afrxxx9lGIZefPFFvfDCC6pevXqhcW+++aZefvllvfLKK9qxY4emTZumZ5991qoyAQAAAACAF1l2RsVHH30kwzD08MMPa+LEiUWGFJJUvXp1TZo0SQ8//LBM09TChQutKhEAAAAA4GOchv0eVI5lQcWePXskSQ899FCZxj/88MOSpL1793qsJgAAAAAAfNHKlSsVHx+vxo0bKyQkRE2bNtWwYcO0adMmj6z30ksvyTAM1+NwODyyjmRhUBEaGipJioqKKtP4/HEhISEeqwkAAAAAAF8zevRo9enTR0lJSTp8+LByc3O1f/9+LViwQF26dNHrr7/u1vV27typKVOmuHXOklgWVLRt21ZS2Tsk8se1adPGYzUBAAAAAHybU6btHk+aNm2apk+fLkmKi4vT5s2bdfz4cSUnJ6tTp07Ky8vT2LFjtWjRIres53Q6dd999+nXX39VbGysW+YsjWVBxf333y/TNDV16tQyjX/99ddlGIbuu+8+D1cGAAAAAID9paena8KECZKknj17KikpSR07dlRkZKS6d++ur776SldccYUk6emnn9avv/5a6TVnzpypDRs2qHPnzho+fHil5ysLy4KK4cOHa/jw4fr44491//3369SpU0WOO3XqlO677z7961//0vDhw5WQkGBViQAAAAAA2FZiYqIyMzMlSVOmTFFAQMG/0oeGhmrSpEmSJIfDoeXLl1dqvQMHDui5555TtWrVNHv2bBmGNSeFWnY96aRJk3T55ZcrOjpaH3zwgebPn68ePXqodevWCgsLU1ZWllJTU7V27Vrl5OQoOjpazZs3d/0mF+Wll16yqnwAAAAAgA15dqOFvSQlJUmSYmJi1LFjxyLHxMfHKyQkRDk5OVqyZIkGDBhQ4fUeeeQRZWZm6plnntFVV12lzz77rMJzlYdlQcWECRNc6YtpmsrJydHKlSu1cuXKAuNM8+IfM4fDoYkTJ5Y4J0EFAAAAAKCqSElJkSR17ty52DHBwcFq166dNmzYoK1bt1Z4rU8++URLly5VdHS0xo8fX+F5KsKyoKJp06aWtYkAAAAAAOBPDh486Nr2UdqhlrGxsdqwYYN2794t0zTL/XfxU6dO6YknnpAkvfnmm6pRo0bFiq4gy4IKT96xCgAAAACompzeLqAIJ0+eLHVMnTp1yjVnenq663WDBg1KHFu/fn1JUm5urrKyshQeHl6utcaMGaMjR45o8ODBiouLK9d33cGyoAIAAAAAgKogIiKi1DH5xx6U1dmzZ12vQ0JCShwbGhrqel3eoCI5OVkffPCBatWqpTfeeKNcNbqLZbd+AAAAAACAirk02PDUsQo5OTl64IEHZJqmXnnlFTVu3Ngj65SGjgoAAAAAgM9y2vDej4yMDLfPGRYW5nqdnZ1d4thLP7/0e6WZNGmSfv75Z3Xo0EGPPvpo+Yt0E68FFf/73/+0a9cunT59WhcuXChxbEJCQoXWKMu+IAAAAAAA3Km850+URWRkpOv10aNHSxx77NgxSRdvAClrULFnzx699tprCgwM1OzZsxUQ4L0NGJYHFe+++67++te/6pdffinTeMMwKhxUlGVfUGB177SyAAAAAABQVlFRUQoPD1dmZqb27t1b4ti0tDRJUsuWLcu8TWT//v2uJoLrrruu1PExMTGSpGbNmrn98gxLI5JHH31UDz30kBwOh0zTLNPjdNrxDFcAAAAAgB2YNnw8pX379pKkjRs3FjsmNzdXKSkpksoWONiRZR0Vq1at0qxZs1StWjW9+eabGj58uMLCwmQYhmv7x/bt25WYmKg5c+aoVatWWrRokVq0aFHhNcuyL6hegysrPD8AAAAAAFbp37+/1q5dq71792rLli3q0KFDoTFJSUnKycmRJMXHx5d57g4dOmjbtm0ljnn77bc1e/ZsSdIXX3yhxo0bKygoqBw/QdlYFlS8++67kqS7775bDzzwQIHPAgICVLt2bXXt2lVdu3bV0KFDdfvtt+vWW2/Vtm3bKry/xxP7ggAAAAAA8IaEhARNmDBBmZmZGjdunL788ssCZ0nk5ORo/PjxkqTo6Gj169evzHOHhYXp2muvLXFMw4YNXa/btGmj6OjoctVfVpZt/di0aVOx50389v7YXr166c9//rP27dunadOmWVUiAAAAAMDHOG34eEpkZKQmTJggSVqzZo3i4+O1ZcsWpaena926derVq5dSU1MlSVOnTi3U7eBwOGQYhgzD0KhRozxYaeVYFlTknzp6aeISGBgoqeirVf74xz9KkhYvXuzx2gAAAAAA8AVPPfWUHn/8cUnSsmXL1LFjR9WrV0/du3fXhg0bFBAQoNdee00DBw70cqUVZ1lQkd+OEhIS4novPDxcknT48OFC4+vWrStJ2rdvnwXVAQAAAADgG6ZPn64VK1aof//+atiwoYKCgtSkSRMNHTpU3333ncaMGePtEivFsjMqGjdurL179+rw4cOuEKJ58+ZKSUnRli1bdNVVVxUYv2vXLklyXY8CAAAAAMBvOT16z4Z99e7dW7179y7Xd6KjowsdvVAeEyZMcG098STLOiryr0W5tEOiW7duMk1TM2bMcJ1KKknnz593/fCtWrWyqkQAAAAAAOBllgUVcXFxMk1T//73v13vPfjgg6pevbr+85//6Morr9TTTz+tP/3pT7r66qu1Zs0aGYahkSNHWlUiAAAAAMDHmDZ8UDmWbf2Ii4vTNddcI4fD4XqvZcuW+sc//qHHHntMe/fu1T/+8Q9J/3cLSP/+/V2HhAAAAAAAAP9nWVARERGhbdu2FXr/4YcfVvv27TVz5kz98MMPys3NVWxsrIYMGaKEhAQZhmFViQAAAAAAwMssCypKcsMNN+iGG27wdhkAAAAAAB/j9HYBcDvLzqgAAAAAAAAojVeDigsXLujYsWMFbgIBAAAAAABVl+VBRU5Ojv7+97+rQ4cOCg0NVaNGjRQbG1tgzJ49e/TEE0/omWeesbo8AAAAAIAPMW34DyrH0jMqHA6HbrvtNqWmprpu9ihKTEyMkpKStH//fg0ePFjXX3+9hVUCAAAAAABvsayjIjs7W71799bOnTsVGRmpiRMn6rPPPiu6qIAADRkyRKZp6vPPP7eqRAAAAAAA4GWWdVS89dZb+vnnn/W73/1O3333naKionT27Nlix99888167bXXtHbtWqtKBAAAAAD4GG798D+WdVR89tlnMgxDr7zyiqKiokod36pVK0nS//73P0+XBgAAAAAAbMKyoGLXrl2SLnZKlMVll10mSTp9+rTHagIAAAAAAPZi2daP7OxsSVKNGjXKND5/W0hISIjHagIAAAAA+DYnt2z4Hcs6KurVqyfp4s0fZbFt2zZJUuPGjT1VEgAAAAAAsBnLgoobbrhBkvTJJ5+Uafzs2bNlGIZuuukmT5YFAAAAAABsxLKgYsSIETJNU3//+9+1YcOGEsdOmTJFy5YtkyTdfffdVpQHAAAAAPBBpg0fVI5lZ1T0799ft956q1atWqWePXvqgQceUK9evVyfb9++XVu3btWHH36o9evXyzAMDR48WDfeeKNVJQIAAAAAAC+zLKiQLm77iIuL07fffqu33npLb731lgzDkCRde+21rnGmaapHjx764IMPrCwPAAAAAAB4mWVbPySpVq1aSk5O1rRp09SsWTOZplnoadSokV5//XV9+eWXqlmzppXlAQAAAAB8jFOm7R5UjqUdFZIUGBioP/3pT/rTn/6k//3vf9q1a5dOnz6tsLAwNW/eXG3btrW6JAAAAAAAYBOWBxWXuvzyy3X55Zd7swQAAAAAAGAjXg0qAAAAAACoDKe3C4DbWXpGBQAAAAAAQEks76jYvXu35s6dq82bN+vIkSM6d+6cTLP4w0YMw9CePXssrBAAAAAAAHiLpUHF3/72N73wwgvKy8srMZy4VP71pQAAAAAA/JbJLRt+x7KgIikpSePGjZMkhYSE6JZbblHr1q1Vo0YNq0oAAAAAAAA2Z1lQMX36dElSmzZttGLFCjVp0sSqpQEAAAAAforDNP2PZYdppqSkyDAM/f3vfyekAAAAAAAARbIsqMjJyZEkdejQwaolAQAAAACAj7EsqGjatKkk6ezZs1YtCQAAAADwc6YN/0HlWBZUDBgwQJL01VdfWbUkAAAAAADwMZYFFc8884waNWqkl156SceOHbNqWQAAAAAA4EMsCyoiIiK0evVqVa9eXe3bt9d7772nAwcOyOnkjFYAAAAAQMU4bfigciy7njQwMLDArx988MEyfc8wDF24cMETJQEAAAAAAJuxLKgwTQ4UAQAAAAAAJbMsqPjwww+tWgoAAAAAUEU4+Y/ifseyoGLkyJFWLQUAAAAAAHyUZYdpAgAAAAAAlMayjgoAAAAAANyNjR/+h44KAAAAAABgGx7pqOjVq5eki1eLrlmzpsB75XXpHAAAAAAAwL95JKhITk6WdDFkuPQ9wzDKfU3ppXMAAAAAAHApJ5s//I5HgoqibvhISEggdAAAAAAAACXySFDx4YcfFnpvzpw5nlgKAAAAAAD4EW79AAAAAAD4LJOtH37Ha0HFhQsX9MMPP8jhcCgzM1Ph4eGKjo7Wtddeq2rVyE8AAAAAAKiKLE8Ejh8/rgkTJmjevHnKysoq9HlYWJhGjBih8ePHq169elaXBwAAAAAAvCjAysU2bNigNm3a6O2331ZmZqZM0yz0ZGZmatasWWrbtq02bdpkZXkAAAAAAB/jtOGDyrGso+LgwYPq27evzpw5I8MwNHDgQA0aNEht2rRRWFiYsrKytHPnTn322Wf6/PPPlZ6err59+2rHjh1q3LixVWUCAAAAAAAvsiyoePXVV3XmzBmFhYXp888/180331xozDXXXKOhQ4dqzZo1+sMf/qDTp0/r1Vdf1ZtvvmlVmQAAAAAAwIss2/qxfPlyGYahiRMnFhlSXOrmm2/WhAkTZJqmli9fblGFAAAAAABf45RpuweVY1lQceTIEUnSwIEDyzR+8ODBkqTDhw97rCYAAAAAAGAvlgUVERERki7e6lEWNWvWLPA9AAAAAAB+y7ThP6gcy4KKTp06SZJSUlLKNH7Lli0FvgcAAAAAAPyfZUHFU089pYCAAD333HM6d+5ciWOzs7P1/PPPKzAwUE8++aRFFQIAAAAAAG+zLKjo0qWLZs2ape3bt+vGG2/UypUrZZoFW2JM09SKFSvUuXNn7dixQzNnztRNN91kVYkAAAAAAB/jtOGDyrHsetJevXpJkurVq6f//ve/6tevn2rWrKkWLVooLCxMWVlZ+vnnn3X27FlJUlRUlBYuXKiFCxcWOZ9hGFqzZo1V5QMAAAAAAAtYFlQkJyfLMAxXF4VpmsrKytK2bduKHH/gwAEdOHCg2PkMw/BInQAAAAAAwHssCyoSEhIIFwAAAAAAbvXbIwXg+ywLKubMmWPVUgAAAAAAwEdZdpgmAAAAAABAaSzrqAAAAAAAwN2cYuuHv6GjAgAAAAAA2AZBBQAAAAAAPmblypWKj49X48aNFRISoqZNm2rYsGHatGlTpeb94osv9OKLL6pfv35q1aqV6tatq+rVq6tu3brq0qWLXn75ZR07dsxNP0XRDLOKH5FaLSjK2yUARbqiThNvlwAUkp33q7dLAIq066fPvF0CUMjZ0fd5uwSgSLXnf+XtEtzq9qa3ebuEQpbuW+bR+UePHq3p06cX+VlgYKAmT56sMWPGVGjuhg0b6ujRoyWOqV27tv75z3/qtts883tPRwUAAAAAAD5i2rRprpAiLi5Omzdv1vHjx5WcnKxOnTopLy9PY8eO1aJFiyo0f/PmzfXoo49q/vz52rhxo/bt26cjR45oy5Yteu6551SrVi2dOnVKgwYN0o4dO9z5o7lU+Y6KiPAW3i4BKFKXOld4uwSgkExnjrdLAIq0uLvT2yUAhdR84z1vlwAUqXpkrLdLcKuq1FGRnp6u2NhYZWZmqmfPnlq9erUCAv6v/yA7O1vt2rXTrl27FB0drV27dikoKMitNWzcuFE33nijTNPUqFGj9OGHH7p1fomOCgAAAACADzNt+I+nJCYmKjMzU5I0ZcqUAiGFJIWGhmrSpEmSJIfDoeXLl7u9hk6dOunKK6+UJG3ZssXt80sEFQAAAAAA+ISkpCRJUkxMjDp27FjkmPj4eIWEhEiSlixZ4pE6qlevLkmuddyNoAIAAAAAAB+QkpIiSercuXOxY4KDg9WuXTtJ0tatW91ew08//aT//Oc/kqTrr7/e7fNLBBUAAAAAAB/mlGm7xxMOHjzo2vYRG1vyOSP5n+/evVvuOJYyNzdXe/bs0YwZM9SrVy/l5eWpTp06eu655yo9d1GqeWRWAAAAAACqqJMnT5Y6pk6dOuWaMz093fW6QYMGJY6tX7++pIsBQ1ZWlsLDw8u1lnTxjIuYmJgiP+vSpYs++OADRUVFlXvesiCoAAAAAADAjSIiIkodU95Oh7Nnz7pel3Y2RGhoqOt1RYOK4rRt21ZPPPGEmjdv7rY5f4utHwAAAAAAn2Wapu0eT/2c+QzD8Mgal2rWrJkyMzOVmZmpEydO6IcfftBf/vIX7d+/X0OGDFGfPn3K1DlSEXRUAAAAAADgRhkZGW6fMywszPU6Ozu7xLGXfn7p98rDMIwC342IiNA111yjgQMHqlOnTlq9erXuvvtuLV68uELzl4SOCgAAAAAA3KhOnTqlPuUVGRnpen306NESxx47dkzSxRtAKhpUFKdVq1Z64oknJF28/nTPnj1unV8iqAAAAAAA+DCnDR9PiIqKcp01sXfv3hLHpqWlSZJatmzpkW0inTp1cr3etm2b2+cnqAAAAAAAwAe0b99ekrRx48Zix+Tm5iolJUWSdN1113mkjgsXLnhk3nwEFQAAAAAAn2Xa8B9P6d+/v6SLHRVbtmwpckxSUpJycnIkSfHx8R6pY+3ata7Xnrj9g6ACAAAAAAAfkJCQ4Nr+MW7cODmdBTea5OTkaPz48ZKk6Oho9evXr1zz79mzR+fPny9xzPfff69Zs2ZJki6//HJde+215VqjLAgqAAAAAADwAZGRkZowYYIkac2aNYqPj9eWLVuUnp6udevWqVevXkpNTZUkTZ06VUFBQQW+73A4ZBiGDMPQqFGjCs3/z3/+U82bN9ezzz6rL7/8Ur/88otOnz6to0eP6ptvvtFTTz2lrl27Kjs7W9WqVdNbb73lkTMwuJ4UAAAAAOCznB7camFHTz31lBwOh2bMmKFly5Zp2bJlBT4PCAjQlClTNHDgwArNv3//fk2ePFmTJ08udkz9+vX17rvv6ve//32F1igNQQUAAAAAAD5k+vTpiouL08yZM7V582ZlZGSofv366tq1q0aPHq0bbrihQvM+8sgjat68uZKTk7Vt2zYdPXpU6enpqlatmiIjI3X11Verb9++GjZsmC677DI3/1T/xzBNs2rFT78REd7C2yUARepS5wpvlwAUkunM8XYJQJEWd/fUZXBAxdV84z1vlwAUqXpkrLdLcKtbftfb2yUUsnr/Sm+X4NPoqAAAAAAA+Kwq/t/e/RKHaQIAAAAAANsgqAAAAAAAALbB1g8AAAAAgM+qard+VAV0VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgM8y2frhd+ioAAAAAAAAtkFQAQAAAAAAbIOtHwAAAAAAn+U02frhb+ioAAAAAAAAtkFQAQAAAAAAbIOtHwAAAAAAn8XGD/9DRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPgsJ5s//A4dFQAAAAAAwDYIKgAAAAAAgG2w9QMAAAAA4LPY+uF/6KgAAAAAAAC2QUcFAAAAAMBnmSYdFf6GjgoAAAAAAGAbBBUAAAAAAMA22PoBAAAAAPBZHKbpf+ioAAAAAAAAtkFQAQAAAAAAbIOtHwAAAAAAn2Wy9cPv0FEBAAAAAABsg6ACAAAAAADYBls/AAAAAAA+yzTZ+uFv6KgAAAAAAAC24fGg4p577tG9996r8+fPl2m8aZqu7wAAAAAAgKrFMD3cJxMQECDDMJSZmakaNWqUOj4vL0/Vq1eXYRjKy8vzZGmSpIjwFh5fA6iILnWu8HYJQCGZzhxvlwAUaXF3p7dLAAqp+cZ73i4BKFL1yFhvl+BW7Rvd5O0SCkk5vN7bJfg0tn4AAAAAAADbsF1Qce7cOUlScHCwlysBAAAAAABWs92tH1999ZUkqXHjxl6uBAAAAABgd9z64X/cHlTcc889Rb7/0EMPqVq14pfLy8vToUOHtH79ehmGoR49eri7NAAAAAAAYHNuDyrmzJkjwzAKvGeapubPn1/qd/OTsHr16un55593d2kAAAAAAMDm3B5UdOvWrUBQsXbtWhmGoS5duigwMLDY71WvXl2RkZHq0KGDEhISFBkZ6e7SAAAAAAB+xim2fvgbtwcVycnJBX4dEHDxvM4VK1aU6XpSAAAAAABQdXn8MM2XXnpJhmEoKCjI00sBAAAAAAAf5/GgYsKECZ5eAgAAAABQRZls/fA7Ad4uAAAAAAAAIJ9bOyrWrVvnet2tW7dC75VX/hwAAAAAAKBqcGtQ0aNHDxmGIcMwdOHChQLvldelcwAAAAAAUBSnydYPf+P2MypM05T5mz8ov/01AAAAAABAUdwaVKSlpZXpPQAAAAAA3IHDNP2PW4OKZs2alek9AAAAAACAonDrBwAAAAAAsA23n1EBAAAAAIBVOEzT/9BRAQAAAAAAbMPjHRWBgYEV+h7XkwIAAAAAUPV4PKjgalIAAAAAgKdw64f/8XhQ8eGHH5b4+YULF3Tw4EH9+9//1qZNm3T55Zdr3LhxFe7EAAAAAAAAvsvjQcXIkSPLNO6ll17S3Llzde+992r16tVasGBBpdc+efJkpecAAAAAAADWsdWtHyNHjtR///tf/eMf/9Btt92mu+66q1LzRURElDqmTtjllVoDAAAAAOA93Prhf2x368eoUaNkmqbeeecdb5cCAAAAAAAsZquOCkn63e9+J0navn17pefKyMgodUzzptdXeh0AAAAAAOAetgsqjh49KknKycmp9Fx16tSp9BwAAAAAAPvi1g//Y7utH3//+98lSbGxsV6uBAAAAAAAWM3jHRX79u0rdUx2drZ++uknffjhh1q6dKkMw9Cdd97p6dIAAAAAAIDNeDyoiImJKdd40zTVsWNHjRkzxkMVAQAAAAD8Bbd++B+Pb/0wTbPMT6NGjfTiiy9q7dq1Cg0N9XRpAAAAAADAZjzeUfH111+X+LlhGAoNDVWjRo3UpEkTT5cDAAAAAABszONBRffu3T29BAAAAACgiuLWD//j8a0fiYmJSkxM1E8//eTppQAAAAAAqBJWrlyp+Ph4NW7cWCEhIWratKmGDRumTZs2VWreAwcOaObMmbrjjjvUsmVL1ahRQyEhIfrd736nAQMG6JNPPpHT6XTTT1E0wzQ9e/JIQECADMPQ1q1bde2113pyqQqJCG/h7RKAInWpc4W3SwAKyXTmeLsEoEiLu3v2/zABFVHzjfe8XQJQpOqRsd4uwa1iI9t5u4RC9qZv8+j8o0eP1vTp04v8LDAwUJMnT67QBRWffvqp7rzzTpUWE3Tr1k2LFi1S3bp1y71GWXi8o6J27dqSpOjoaE8vBQAAAACoYkzTabvHk6ZNm+YKKeLi4rR582YdP35cycnJ6tSpk/Ly8jR27FgtWrSo3HNnZWXJNE01bNhQY8aM0apVq7R//36lp6frm2++UXx8vCRp3bp1uv322z3WWeHxjorrr79eW7duVWpqqlq2bOnJpSqEjgrYFR0VsCM6KmBXdFTAjuiogF35W0dFTN1rvF1CIWkn/uORedPT0xUbG6vMzEz17NlTq1evVkDA//UfZGdnq127dtq1a5eio6O1a9cuBQUFlXn+lStXat++fbr77rtVrVrRR1red999ev/99yVJ//rXv3THHXdU7ocqgsc7KgYPHizTNPXJJ594eikAAAAAQBXjlGm7x1MSExOVmZkpSZoyZUqBkEKSQkNDNWnSJEmSw+HQ8uXLyzV/7969df/99xcbUkjSX//6V9e65Z2/rDweVIwePVpXXnmlXn31Va1cudLTywEAAAAA4JeSkpIkSTExMerYsWORY+Lj4xUSEiJJWrJkidtrqFevnurXry9JOnTokNvnlyy4nnTTpk2aOHGinnjiCfXr1099+vRRXFycYmNjVaNGjRK/261bN0+XBwAAAACAT0hJSZEkde7cudgxwcHBateunTZs2KCtW7e6vYbz58/r5MmTkqTLLrvM7fNLFgQVPXr0kGEYkiTTNLVixQqtWLGi1O8ZhqELFy54ujwAAAAAgA/z8LGLtnHw4EHXto/Y2JLPGYmNjdWGDRu0e/dumabp+ju5Oyxbtky5ubmSpBtvvNFt817K40GFVPAPTlX5QwQAAAAAqJryOw5KUqdOnXLNmZ6e7nrdoEGDEsfmb83Izc1VVlaWwsPDy7VWcXJzczVu3DhJUnh4uIYPH+6WeX/L40FFWlqap5cAAAAAAMA2IiIiSh1T3v+If/bsWdfr/DMoihMaGup67c6g4pFHHtHu3bslSa+88ooiIyPdMu9vuTWoqFOnjgICAnTgwAHXb8wvv/wiSeratatb200AAAAAAPDkLRt2cmmw4Y2/W0+dOlUffPCBJOn222/X448/7rG13BpUnD59WoZhFPgN7NGjhwICAnTmzJlSD88EAAAAAMDXZWRkuH3OsLAw1+vs7OwSx176+aXfq6g5c+Zo7Nixki4e5PnRRx95NCxxa1ARGBgop9NZ6BBMzqUAAAAAAFQV5T1/oiwu3WZx9OjREsceO3ZM0sUbQCobVHz66ae67777ZJqmrr32Wi1fvtzjTQgB7pws/38MzqUAAAAAAFjBNE3bPZ4QFRXlOmti7969JY7N/zt5y5YtK9X58MUXX+iuu+5SXl6eWrdurS+//FK1a9eu8Hxl5daOinbt2mn16tV6/PHHNXbs2AJ3qq5fv77UAz9+q1u3bu4sDwAAAAAAn9W+fXutXbtWGzduLHZMbm6uUlJSJEnXXXddhdf66quvNHjwYJ0/f16xsbFavXq16tWrV+H5ysOtQcXDDz+sVatW6dtvv9W3337ret80TfXt27dccxmGUWgLCQAAAAAAVVX//v21du1a7d27V1u2bFGHDh0KjUlKSlJOTo4kKT4+vkLrfPfdd+rfv79ycnLUpEkTrVmzRo0bN65U7eXh1q0fAwYM0KxZs9SoUaNCLS92aZcBAAAAAPgPp2na7vGUhIQE1/aPcePGyel0Fvg8JydH48ePlyRFR0erX79+5V5j27Zt6tevn86ePasGDRpozZo1io6OrnTt5eHWoEKSHnzwQR04cEDHjh1z7YsxDEM//vij0tLSyvyUtucGAAAAAICqJDIyUhMmTJAkrVmzRvHx8dqyZYvS09O1bt069erVS6mpqZIuXicaFBRU4PsOh0OGYcgwDI0aNarQ/D/99JN69+6t06dPq1atWvr888/VuHFjZWVlFfmcO3fOIz+nW7d+XCoyMrLAqaTNmjXjelIAAAAAACrhqaeeksPh0IwZM7Rs2TItW7aswOcBAQGaMmWKBg4cWO65P/roIx0/flySdObMGd14440ljm/WrJkcDke51ymNx4KKfB9++KEklfsgTQAAAAAASmOq6h0bMH36dMXFxWnmzJnavHmzMjIyVL9+fXXt2lWjR4/WDTfc4O0SK8Uwq/hhEBHhLbxdAlCkLnWu8HYJQCGZzhxvlwAUaXF3Z+mDAIvVfOM9b5cAFKl6ZKy3S3CrhrVbe7uEQo6cSvV2CT7N7WdUAAAAAAAAVJTHt34AAAAAAOApVXyTgF+iowIAAAAAANgGQQUAAAAAALANtn4AAAAAAHyWswre+uHv6KgAAAAAAAC2QVABAAAAAABsg60fAAAAAACfxa0f/oeOCgAAAAAAYBt0VAAAAAAAfJaTjgq/Q0cFAAAAAACwDYIKAAAAAABgG2z9AAAAAAD4LA7T9D90VAAAAAAAANsgqAAAAAAAALbB1g8AAAAAgM9yiq0f/oaOCgAAAAAAYBsEFQAAAAAAwDbY+gEAAAAA8Fnc+uF/6KgAAAAAAAC2QVABAAAAAABsg60fAAAAAACf5WTrh9+howIAAAAAANgGQQUAAAAAALANtn4AAAAAAHyWKbZ++Bs6KgAAAAAAgG0QVAAAAAAAANtg6wcAAAAAwGdx64f/oaMCAAAAAADYBkEFAAAAAACwDbZ+AAAAAAB8lsnWD79DRwUAAAAAALANggoAAAAAAGAbbP0AAAAAAPgsU2z98Dd0VAAAAAAAANugowIAAAAA4LM4TNP/0FEBAAAAAABsg6ACAAAAAADYBls/AAAAAAA+i60f/oeOCgAAAAAAYBsEFQAAAAAAwDbY+gEAAAAA8Fls/PA/dFQAAAAAAADbIKgAAAAAAAC2YZgckYpKOnnypCIiIiRJGRkZqlOnjpcrAi7izybsij+bsCP+XMKu+LMJVD10VAAAAAAAANsgqAAAAAAAALZBUAEAAAAAAGyDoAIAAAAAANgGQQUAAAAAALANggoAAAAAAGAbBBUAAAAAAMA2CCoAAAAAAIBtGKZpmt4uAgAAAAAAQKKjAgAAAAAA2AhBBQAAAAAAsA2CCgAAAAAAYBsEFQAAAAAAwDYIKgAAAAAAgG0QVAAAAAAAANsgqAAAAAAAALZBUAEAAAAAAGyDoAIAAAAAANgGQYWfS05OlmEYMgxDDofD2+Wgilu8eLF+//vfq169eqpWrZoMw1Dt2rUlyfXndM6cOYW+N2rUKBmGoR49enikrgkTJsgwDEVHR3tkfvgXT/95hH/gz4l1Svr3B6xX0r/rreRwOFx/NpKTky1fH0DlEFTAb/F/Eu1l9uzZ+sMf/qBVq1YpPT1deXl53i7JrQg7AABVnS/9u75Hjx4yDEOjRo3ydikAikBQAcASkyZNkiR16dJFKSkpOnny5P9r786jojgSP4B/uYZBQMEDFVRAo6KIJybqKujiajSgxngtScRostH1Wo+oMfmJ1768KE+NZqMxrqjRfUlc1wODqFGDika80ICABAm6XjAMyKCCAvX7gze9A9NzMIIM+v28N++hdXR1V011TXV3NTQaDW7fvl3HJSMiIqKawHM9EdUU+7ouANWugQMHQghR18Wgl1xubi7u3LkDAJg/fz569OhRrfTbtm3jLb1EVK+w36KXzbOe62uaj48Px8BE9RjvqCCiWvfo0SPp77p4TpWIiIhqF8/1RFSTOFFRDwghkJiYiE8//RT9+vVDkyZN4ODgAHd3d/Tu3RuRkZHIy8uTTWtqMU3dBajKy8uxadMmDBgwAM2aNYOtrS2WLl0qG7esrAwbNmzAq6++Cjc3N7i6uqJ379748ssvzXoe8dChQxgzZgy8vLzg6OiIxo0bo1+/foiKiqp0oquq6vOEhw8fxqhRo+Dl5QV7e3sMHDgQ27Ztg42NDbZv3w4AiI+Pl8qu/XDdiudDWxe66zYMGjSoUl2Ys8CVOeuNqNVqLFiwAB06dIBSqUTz5s0xfPhwHD582Ow8tLKzszF9+nS0bdsWSqUSTZs2RWhoKE6dOqUXV/sdW7ZsmZS2anvjuhXWpWpbSEhIwFtvvQVPT08olUr4+Pjgr3/9K/773/9alH9mZibWrVuHoUOHwsvLCwqFAi4uLvDz88PUqVORmppqMG3Vxd9KS0ulvrZRo0ZwdnZGjx49sGbNGjx9+tRkWZKSkvCXv/wFHTp0gIuLC5ydndG5c2fMmTPH4v17WTxrOzHW52j7RhsbGwBAXl4eFi1ahI4dO8LJyQnu7u4ICQnB/v37zSrr/v37MWbMGLRu3RpKpRLu7u7o06cPVq9ebfScmpeXh2+//Rbjx4/HK6+8ggYNGkCpVKJNmzYYO3Ysjhw5YnS7Pj4+sLGxkcYKO3fuRHBwMJo0aYIGDRogICAAf//73/H48WODedTk2MKY4uJifPnllwgJCYGHhwcUCgU8PDwwbNgwfP/997zy/gzMPddX7d+Ki4uxatUq9O7dG+7u7pUWRDV3Mfiq3yVdhhbT1K4pFR8fDwDYvn273nmb61YQWQFBVm/fvn0CgNFPixYtxOXLl/XSnjhxQoqTlZWlF64N27Rpkxg0aJBevpGRkXpxv/76axESEmKwLMHBwaKoqEh2X0pKSkR4eLjRffHx8RGpqamy6YODgwUAERERIT7++GPZbUdHR5s8XsHBwRbUBFWXOXVx4sQJIcT/2ld0dLRePhEREUbrLS0tTXh6ehrcxrJly4zmERkZKQAIb29vER8fL9zc3GTzsbW1FTt37qyUVvc7Zujj7e39bAeSapRuW9i8ebOws7OTrbeGDRuKhIQEo+mrKigoMNkeHBwcxI4dO2TLlpWVJcU7ePCgGDBggMF8hg0bJsrKymTzKS8vFwsWLBA2NjYG07u4uIjY2NhnOpYvstpsJ7p947Vr14SXl5fBevrss88MlrGgoEAMGTLEaHtr3769yMzMlE3fvXt3k+116tSpBrfv7e0tjRXeffddg3n4+/uL+/fvy+ZRE2MLY+cPIYRITk4Wvr6+RvczLCxMPHz40OC+kmHmnut1+7c9e/aIgIAAvXjaOjQ1fpXbdlW629OONYT43znf2CciIqJmDxIRVRsnKuqBmJgYMWjQILF+/Xpx+vRpkZmZKVQqlUhJSRGbN28Wfn5+AoDw9fUVjx8/rpTW3IkKLy8vYWtrK+bMmSOSkpJEXl6eSElJEYmJiXpxtSf76dOni6tXrwqVSiXOnTsnxo4dK8UJDw+X3ZepU6dWGmSfPHlSqFQqkZ6eLiIjI4VCoRAAROvWrUV+fr5eeu1EhXZQ98Ybb4j4+HiRm5srsrOzxZEjR8TTp0+FRqMRb7/9tgAg+vfvLzQaTaXPo0ePnqlOyDzaukhJSZHqPTY2tlJdlJaWCiEsn6h49OiReOWVV6QfgEuWLBHp6elCpVKJ06dPi2HDhgkbGxvRtm1bg3loBy1ubm6iSZMmwt/fX/zwww/i9u3bIicnR+zevVuaCHF1dRV5eXlS2tLSUqHRaKSJszZt2ui1Nw5+rYu2PXl5eQmFQiF69OghDh06JHJycsSNGzdEVFSUcHZ2FgBE48aNxb1792TTG5qoCAgIEEuWLBHHjh0TqampQqVSiYyMDLFv3z4xePBgAUAoFApx9epVvfS6A+t27doJJycnsXz5cpGamirUarW4dOmSGDFihBTnm2++kd3HhQsXSnHGjRsnjh07Ju7fvy9yc3NFXFyc6NevnwAgnJycRHJyco0c1xdNbbYT3R9X7dq1E61btxZbt24V2dnZQqVSibi4ONGpUycBQNjZ2clO3j99+lT0799fABCOjo5i4cKF4uLFiyIvL0/cunVLbNu2TbRq1UoAEJ06dZLth4YPHy6mTZsmYmJixJUrV0ROTo64efOmOHnypHj//felyZlNmzbJHiPtRIV2XDBu3DiRmJgoVCqVuHLlipg2bZq0n/379xfl5eV6edTE2MLY+ePWrVuiadOmAoBo2bKl2LBhg0hPTxdqtVqkp6eLlStXCqVSKQCIiRMnyuZPxpl7rtft37y8vIRSqRTLli0TqampIi8vT1y8eFGkpKQIIWp3oqKkpERoNBrp+/P222/rnbeLi4tr+jARUTVxouIFoNFoRLt27QQAsXXr1kph5k5UABBfffWV0e3oxl26dKlsHN0rKr/88kulsKSkJCls9OjRsgOWH374QYozb948vXDtRAUAMX78eNk8tExdhafnx9BgQZelExWrVq2S0m7btk0vvKysTAwfPlyKY2yiAoAICAgQGo1GL05iYqIUR27QrntXBlk3bXsCILp06SJb30ePHpXuRqh6RflZ+5YJEyYY/FGk+12xs7MTx44d04tTWloqunbtKgCIPn366IVfunRJKvvnn38uW4YnT56IoKAgAUCEhoZatB8vutpsJ7o/rlq2bCnu3LmjF+fmzZvSD+hFixbpha9du1aaoD116pTsPty6dUs0a9ZMABBRUVFm7vn/bNy4UerX5M632okKAOK9996TzePTTz+V4nz33Xd64c86ttDNQ+78MXLkSGkipOpkklZcXJyUx4ULF2TjkGmmzvW64QDEjz/+aDCv2pyo0NK9S5eIrA/XqHgBuLi4YPTo0QCAo0ePWpRHp06dMG3aNLPienp6YvHixbJha9asgUKhAAD885//rBS2ZcsWAIC9vT02bNgg+zzh2LFjMXjwYADA1q1bUV5eLrsdOzs7rFmzRjYPerlon2ft2bMnIiIi9MJtbW2xdu1as/NbvXo1XFxc9P6/d+/e6NKlCwAgMTHRssKS1fn8889l63vw4MF48803AVQ8d//kyZMa2+a7774LwHR/PXbsWPzxj3/U+387OztMnDgRAHDp0iWUlpZWCv/iiy8ghIC/vz8++ugj2bwdHBywYsUKAEBsbCwKCgqquxsvldpsJ5GRkWjZsqXe/7du3Vo6H8r1OV988QUA4IMPPkD//v1l827VqhVmzJgBANi1a1e1y6ZtZ9nZ2cjIyDAYz9HREVFRUbJh//d//4cWLVoA0B8X6LJ0bGFMVlYWDhw4AKCiDps3by4bb+jQoRg0aBAAy44TVd/rr7+O4cOH13UxiMiKcaKinigtLcX27dsxYsQItGnTBg0aNKi06M/q1asBAOnp6RblX52TRVhYGBwcHGTDmjZtiuDgYADA6dOnK4VpFyLs168fPD09DeY/fvx4AEB+fj6Sk5Nl43Tv3t1oHvRyyM/Px7Vr1wAAI0eONBivQ4cO8PPzM5mfo6Oj7A9DrU6dOgEA7t27V82SkjVydnbG0KFDDYa/9dZbAICioiIkJSVVK+/jx48jIiICfn5+cHV1ha2trdRfv/HGGwCAu3fvQqPRGMxj2LBhBsO0bfHJkyfIz8+vFKadAPnTn/6Ehw8foqioSPajzaO8vBwXL16s1v69TGqznQDm1XPVPicjI0NaYDAkJMRgHRcVFUkTrFeuXJGdSElPT8fcuXMRGBgId3d32NvbS23V2dm5UjxDBg4ciMaNG8uGKRQKhIWFAQDOnj1r8AKEpWMLY3766ScIIWBjY4OgoCCjx6lbt24AgPPnz5udP1lO2w8SERliX9cFINNyc3Px+uuv49KlSybjPnjwwKJttG3b1uy42oGTIZ07d8bRo0f1VmnOzs6Wwo3x9/eX/v7999/RtWtXvTjVKS+9uLRtCoDJiQg/Pz+kpaUZjdO0aVODA2UAaNCgAQAYXUWf6o/27dvDzs7OYLhuX/X777/j1VdfNZlnWVkZ3n//felOH1MePHgAV1dX2TBjk7HatghUbo9FRUW4c+cOAGDdunVYt26dWeXIzc01K97LqDbaiS5z6rlqn6M7aaCdKDGlvLwcarVaursBADZu3IjZs2eb9QYZY+MLc8YFQEX7VKlU8PDwsCgPubGFMdrjJISotN/G8LvwfHAcR0Sm8I6KemDixIm4dOkS7O3tMWvWLBw9ehRZWVnIy8uDRqOBRqPBokWLAEDvFmBz6Q56TZG7/VUu/PHjx5VeJ6a9cmgqve6g3dDVxuqUl15cRUVF0t+6V/7kmGp3QMVjSeYQfI3dC8Hcvgww3BdVFRUVJU1ShIWFYc+ePUhLS4NKpZL66x9//FGKb6zPtqQ9WjpZXVxcbFG6l0FttBNd5tRz1T6nJur5l19+wfTp0/H06VN07doVW7ZsQVJSEu7fv4/CwkJoNBoUFhZK8Y211Zo4RpaOLYyx5Djxu/B8cBxHRKbwjgord+PGDcTFxQEANmzYgKlTp8rGe55XeHV/HBoLd3JyqnQVytXVFQUFBWan16YhMkR3YPvw4UOjcU21O3r51EZf9I9//ANAxSNs3333nWyckpISM0tYfbrfibVr1+Jvf/tbrW3rZWGN5yzder58+TK6d+9e7Ty++uorCCHg6+uLs2fPyv5wrPpYkSE1cYwsHVsYoz1OjRo14jos9Yy5a5BZeoGOiKwf76iwcrrPu/75z382GO/XX399DqWpkJqaajRcu2aAj49Ppf/X/jslJcVoet11KarmQaTL29tb+tvU+iyWrt9CL66MjAyjV2a1fRlgXl+kVqtx69YtAHXXXzdq1AhNmjQBALMeFyTTarqd1IR27dpJf1taz9rxxciRIw1e3Ta3rZo7LnBxcUHTpk2fKY/qHGPtcXrw4AFu3Lhhdjqqe05OTtLfjx8/Nhjv9u3bz6M4RFQHOFFh5XSvvBkaKN28eRMnT558XkVCTEyMwedZVSqVVJaqq5APGDAAAHDmzBnpGWo5u3fvBgC4u7tLi4BZQrvWgLm3iFL94+7uLj37vH//foPxMjIyTA6CnxXbW/3z8OFDHD582GD4nj17AFT8uDLnirU5/XV5eTn+9a9/Va+g1TRkyBAAFd8JtVpdq9t6GdR0O6kJ/v7+0toW0dHRFuWhba/G+qxvv/3WrLzi4+MNtrUnT54gJiYGANC3b1/Y2soPPS0dWxij/S4AFW8So/pD9004xtaXOnTokMXb4HmbyLpxosLK6S42JPdD7OnTp/jggw+eayd7584dfPbZZ7Jhc+fOlQY/kydPrhQ2ZcoUABUnhFmzZsk+5/+f//wHR44ckeIbGtCYQ3vVxtikCNV/2leSXrx4ETt37tQLLy8vx7x582q9HNr2lpuby1tR65FFixbJPjZ07Ngx7N27FwDwzjvvSK9GNMbDw0O61dzQxNny5ctr/e6euXPnAgAKCwsxadIkk4+a8G4j02qyndQEGxsbqZ5Pnz5t8JysVVZWht9++63S/2nHF4cPH5ZtI8ePHzd7EqS4uBjz58+XDVu5cqX01hLtOECOpWMLYzp06IDQ0FAAFevH/Pzzz0bjFxYW4u7du2bnT7WndevWJifjtm/fjnPnzlm8DY4TiawbJyqsXGBgoDSYmD17NtavX4/MzEzk5uYiLi4OwcHBOHLkiMk3adQkHx8fREZGYsaMGUhOToZarcaFCxcwfvx46epLeHg4+vTpUyldt27dpDU29uzZg7CwMCQkJECtViMjIwPLly9HeHg4gIoT1CeffPJM5QwMDARQsc7H5s2bkZ+fj9LSUpSWlnL2/AUyY8YM6fbeKVOmYNmyZcjIyIBarcaZM2cwYsQIxMTEwNfXt1bLoW1vJSUlWLlyJXJyctjerJyXlxfS0tIQFBSEuLg4qFQqZGdnY82aNRg1ahSEEGjcuDGWLl1qVn52dnbSGxh27NiB2bNnIzk5GXl5eTh//jwmTZqEZcuW1Xp/HRgYiMWLFwOouEodGBiIbdu2ITMzEwUFBbh79y4SEhKwevVq9O7d2+y3Rrysarqd1JRZs2Zh4MCBAIDFixcjLCwMBw8exO3bt1FQUIDs7GwcPnwYCxcuRNu2bfXeAKN9Ffj169cRGhqKhIQEqFQqpKenY/ny5QgNDUXHjh3NKouPjw+io6MxYcIEXLhwAWq1Gr/++iumT5+OFStWAKi4E2LcuHFG87BkbGHKxo0b0bx5c5SUlGDIkCGYOXMmEhISkJOTA7VajevXr+Pf//43Jk+ejFatWiEhIaFa+VPt0U5sxcTE4MMPP0RaWhry8/Nx9epVzJs3D5MnT670GFR1ac/bp0+fxr59+1BYWCidtw29RpeIniNBVi8+Pl44OTkJALKf+fPni8jISAFAeHt7V0p74sQJKV5WVpZe3tqw6Ohok+XQxv3666/FoEGDDJYnODhYFBUVyeZRUlIiwsPDDaYFIHx8fERqaqps+uDgYAFAREREmCxvcXGx6Nixo8Ey0vOTlZUlHfsTJ07IxjHWFiMiIozW27Vr10SLFi0MtqnIyEgxceJEAUCEhITopTf0/aluOQYOHCi7fVP50vOlW4+bNm0Stra2svXWsGFDkZCQYDR9Vffu3RO+vr4G22JQUJCIjY012C+b810RwnTfXl5eLlauXCns7OyM9rcARM+ePat5BF8OtdlOoqOjpfTGmOqbCgsLxZgxY0zWMQAxd+7cSmnLyspEWFiYwfitWrUSaWlpRvtmb29vqY995513DObl7+8v7t27J7sPNTG2MDWWuX79uggICDDrOB04cMBgfZBxpvovc/s3rUePHonAwECDdTVu3DixZcsWg98lU9vLyckRzZo1k83bnHEmEdUu3lFRDwQFBSExMRETJkyAh4cHHBwc0KJFC4SGhuLgwYNYvXr1cy2PQqHAkSNHsHbtWvTq1Quurq5wdnZGr169sH79ehw7dszgqyIVCgV27dqF2NhYjB49Gp6ennBwcICbmxv69u2LVatWISUlBX5+fs9cTkdHR8THx2PmzJno2LEjlErlM+dJ1qlTp05ITk7GvHnz0K5dOzg6OqJZs2YYOnQoDh48iKVLl0orxjds2LDWynHgwAEsXrwYAQEBcHZ2NnvVcqo7H374IU6cOIFRo0ahRYsWUCgU8Pb2xtSpU5GSkoJ+/fpVK7/mzZvj/PnzmDNnDnx9feHg4IDGjRujb9++2LBhA44fP15pkbjaYmNjg08++QQZGRn46KOP0LNnT7i5ucHOzg4NGzZEly5dMGXKFMTExODMmTO1Xp76rqbbSU1xdXXF7t27cerUKUyePBkdOnSAi4sL7O3t0aRJE7z22mtYsGABzp49i6ioqEppbW1tsXfvXqxduxbdu3eHUqmEi4sLOnfujI8//hhJSUlm31EBVKxnER0djT/84Q9wd3eHk5MT/P39sWLFCpw/fx7Nmzc3mv5ZxhamtG/fHpcvX8auXbvw5ptvolWrVnB0dIRCoYCnpydCQkKwatUq/PbbbwgLC7NoG1TznJyc8PPPP2Pp0qXo3LkzlEol3Nzc0L9/f+zYsQPff/+92W+AkdOsWTOcPXsW7733Hnx9feHo6FiDpSeiZ2UjhMxCAUQytD+6oqOjMWnSpLotDFE1devWDVevXsXMmTOxfv36ui4O1aFJkyZh+/btCA4ONvnMOr282E5M8/HxQXZ2NiIjIy1+9IVjCyIiksM7KojohZeVlSW9Zq9Xr151XBoiIiIiIjKGExVEVO8ZewVjaWkpZsyYASEElEolRo4c+RxLRkRERERE1cWJCiKq97Zu3Yo+ffrgm2++QWpqKgoKCnD79m3s3bsXQUFBiI2NBQDMnz8fbm5udVtYIiIiIiIyyr6uC0BEVBPOnTtn9H3q4eHhWLJkyXMsERERERERWYITFURU740bNw5lZWX46aefkJmZiZycHJSWlsLDwwOvvfYaJk+ejGHDhtV1MYmIiIiIyAx86wcRERERERERWQ2uUUFEREREREREVoMTFURERERERERkNThRQURERERERERWgxMVRERERERERGQ1OFFBRERERERERFaDExVEREREREREZDU4UUFEREREREREVoMTFURERERERERkNThRQURERERERERWgxMVRERERERERGQ1OFFBRERERERERFaDExVEREREREREZDU4UUFEREREREREVoMTFURERERERERkNThRQURERERERERWgxMVRERERERERGQ1OFFBRERERERERFaDExVEREREREREZDX+H3Lb2iNUtvxLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "image/png": { "height": 416, "width": 533 } }, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "\n", "X = pd.Series([\"airport\", \"flight\", \"plane\", \"pineapple\", \"fruit\"])\n", "encoder = skrub.TextEncoder(model_name=\"all-MiniLM-L6-v2\", n_components=None)\n", "embeddings = encoder.fit_transform(X).set_index(X.values)\n", "\n", "sns.heatmap(embeddings @ embeddings.T)" ] }, { "cell_type": "markdown", "id": "bb9b1f58", "metadata": {}, "source": [ "### `MinHashEncoder`\n", "\n", "A fast, stateless way of encoding strings that works especially well with\n", "models based on decision trees (gradient boosting, random forest)." ] }, { "cell_type": "markdown", "id": "05fcf97f", "metadata": {}, "source": [ "# 4. How do I bring it all together?\n", "\n", "Skrub has several transformers that allow peforming typical dataframe\n", "operations such as projections, joins and aggregations _inside a scikit-learn pipeline_.\n", "\n", "Performing these operations in the machine-learning pipeline has several advantages:\n", "\n", "- Choices / hyperparameters can be optimized\n", "- Relevant state can be stored to ensure consistent transformations\n", "- All transformations are packaged together in an estimator\n", "\n", "There are several transformers such as `SelectCols`, `Joiner` (fuzzy joining),\n", "`InterpolationJoiner`, `AggJoiner`, ...\n", "\n", "A toy example using the `AggJoiner`:" ] }, { "cell_type": "code", "execution_count": 19, "id": "b8ad5457", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ " airport_id airport_name city\n", "0 1 Charles de Gaulle Paris\n", "1 2 Aeroporto Leonardo da Vinci Roma" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from skrub import AggJoiner\n", "\n", "airports = pd.DataFrame(\n", " {\n", " \"airport_id\": [1, 2],\n", " \"airport_name\": [\"Charles de Gaulle\", \"Aeroporto Leonardo da Vinci\"],\n", " \"city\": [\"Paris\", \"Roma\"],\n", " }\n", ")\n", "airports" ] }, { "cell_type": "code", "execution_count": 20, "id": "ef448c06", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ " flight_id from_airport total_passengers company\n", "0 1 1 90 DL\n", "1 2 1 120 AF\n", "2 3 1 100 AF\n", "3 4 2 70 DL\n", "4 5 2 80 DL\n", "5 6 2 90 TR" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "flights = pd.DataFrame(\n", " {\n", " \"flight_id\": range(1, 7),\n", " \"from_airport\": [1, 1, 1, 2, 2, 2],\n", " \"total_passengers\": [90, 120, 100, 70, 80, 90],\n", " \"company\": [\"DL\", \"AF\", \"AF\", \"DL\", \"DL\", \"TR\"],\n", " }\n", ")\n", "flights" ] }, { "cell_type": "code", "execution_count": 21, "id": "af246597", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "
\n", "

Please enable javascript

\n", "

\n", " The skrub table reports need javascript to display correctly. If you are\n", " displaying a report in a Jupyter notebook and you see this message, you may need to\n", " re-execute the cell or to trust the notebook (button on the top right or\n", " \"File > Trust notebook\").\n", "

\n", "
\n", "\n", "" ], "text/plain": [ " airport_id airport_name city total_passengers_mean \\\n", "0 1 Charles de Gaulle Paris 103.333333 \n", "1 2 Aeroporto Leonardo da Vinci Roma 80.000000 \n", "\n", " total_passengers_std \n", "0 15.275252 \n", "1 10.000000 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "agg_joiner = AggJoiner(\n", " aux_table=flights,\n", " main_key=\"airport_id\",\n", " aux_key=\"from_airport\",\n", " cols=[\"total_passengers\"],\n", " operations=[\"mean\", \"std\"],\n", ")\n", "agg_joiner.fit_transform(airports)" ] }, { "cell_type": "markdown", "id": "874e7c77", "metadata": {}, "source": [ "## More interactive and expressive pipelines\n", "\n", "To go further than what can be done with scikit-learn Pipelines and the skrub\n", "transformers shown above, we are developing new utilities to easily define\n", "and inspect flexible pipelines that can process several dataframes.\n", "\n", "A prototype will be shown in a separate notebook." ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "main_language": "python", "notebook_metadata_filter": "-all" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3", "path": "/home/jerome/miniforge3/envs/skb/share/jupyter/kernels/python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }