Computation times#

13:48.269 total execution time for 17 files from all galleries:

Example

Time

Mem (MB)

Multiples tables: building machine learning pipelines with DataOps (../examples/data_ops/1120_multiple_tables.py)

04:19.405

0.0

Various string encoders: a sentiment analysis example (../examples/0020_text_with_string_encoders.py)

02:50.454

0.0

AggJoiner on a credit fraud dataset (../examples/0070_join_aggregation.py)

02:00.260

0.0

Tuning DataOps with Optuna (../examples/data_ops/1131_optuna_choices.py)

01:03.567

0.0

Hyperparameter tuning with DataOps (../examples/data_ops/1130_choices.py)

00:48.758

0.0

Encoding: from a dataframe to a numerical matrix for machine learning (../examples/0010_encodings.py)

00:36.740

0.0

SquashingScaler: Robust numerical preprocessing for neural networks (../examples/0100_squashing_scaler.py)

00:23.461

0.0

Spatial join for flight data: Joining across multiple columns (../examples/0060_multiple_key_join.py)

00:22.952

0.0

Interpolation join: infer missing rows when joining two tables (../examples/0080_interpolation_join.py)

00:19.099

0.0

Subsampling for faster development (../examples/data_ops/1140_subsampling.py)

00:13.803

0.0

Fuzzy joining dirty tables with the Joiner (../examples/0040_fuzzy_joining.py)

00:12.088

0.0

Hands-On with Column Selection and Transformers (../examples/0090_apply_to_cols.py)

00:09.867

0.0

Getting Started (../examples/0000_getting_started.py)

00:09.209

0.0

Introduction to machine-learning pipelines with skrub DataOps (../examples/data_ops/1110_data_ops_intro.py)

00:06.767

0.0

Use case: developing locally and deploying to production (../examples/data_ops/1150_use_case.py)

00:06.650

0.0

Handling datetime features with the DatetimeEncoder (../examples/0030_datetime_encoder.py)

00:03.918

0.0

Deduplicating misspelled categories (../examples/0050_deduplication.py)

00:01.270

0.0