Computation times#

15:46.229 total execution time for 18 files from all galleries:

Example

Time

Mem (MB)

Various string encoders: a sentiment analysis example (../examples/0020_text_with_string_encoders.py)

03:35.401

1384.7

Multiples tables: building machine learning pipelines with DataOps (../examples/data_ops/1120_multiple_tables.py)

03:11.428

678.6

AggJoiner on a credit fraud dataset (../examples/0070_join_aggregation.py)

02:47.012

729.2

Tuning DataOps with Optuna (../examples/data_ops/1131_optuna_choices.py)

01:04.544

613.5

Encoding: from a dataframe to a numerical matrix for machine learning (../examples/0010_encodings.py)

00:55.308

517.0

SquashingScaler: Robust numerical preprocessing for neural networks (../examples/0100_squashing_scaler.py)

00:32.401

519.2

Spatial join for flight data: Joining across multiple columns (../examples/0060_multiple_key_join.py)

00:30.899

2410.2

Hyperparameter tuning with DataOps (../examples/data_ops/1130_choices.py)

00:30.751

518.4

Fuzzy joining dirty tables with the Joiner (../examples/0040_fuzzy_joining.py)

00:28.937

517.5

Interpolation join: infer missing rows when joining two tables (../examples/0080_interpolation_join.py)

00:25.130

1971.8

Using PyTorch (via skorch) in DataOps (../examples/data_ops/1160_pytorch.py)

00:20.085

537.7

Subsampling for faster development (../examples/data_ops/1140_subsampling.py)

00:15.908

528.3

Getting Started (../examples/0000_getting_started.py)

00:15.563

518.9

Hands-On with Column Selection and Transformers (../examples/0090_apply_to_cols.py)

00:15.520

516.7

Introduction to machine-learning pipelines with skrub DataOps (../examples/data_ops/1110_data_ops_intro.py)

00:13.657

517.3

Handling datetime features with the DatetimeEncoder (../examples/0030_datetime_encoder.py)

00:11.271

520.6

Use case: developing locally and deploying to production (../examples/data_ops/1150_use_case.py)

00:08.825

617.5

Deduplicating misspelled categories (../examples/0050_deduplication.py)

00:03.590

517.0