Computation times#

14:24.340 total execution time for 16 files from all galleries:

Example

Time

Mem (MB)

Multiples tables: building machine learning pipelines with DataOps (../examples/data_ops/12_multiple_tables.py)

04:10.441

0.0

Various string encoders: a sentiment analysis example (../examples/02_text_with_string_encoders.py)

03:40.613

0.0

AggJoiner on a credit fraud dataset (../examples/07_join_aggregation.py)

02:32.708

0.0

Encoding: from a dataframe to a numerical matrix for machine learning (../examples/01_encodings.py)

00:49.450

0.0

Hyperparameter tuning with DataOps (../examples/data_ops/13_choices.py)

00:47.640

0.0

SquashingScaler: Robust numerical preprocessing for neural networks (../examples/10_squashing_scaler.py)

00:28.496

0.0

Spatial join for flight data: Joining across multiple columns (../examples/06_multiple_key_join.py)

00:27.502

0.0

Interpolation join: infer missing rows when joining two tables (../examples/08_interpolation_join.py)

00:17.915

0.0

Fuzzy joining dirty tables with the Joiner (../examples/04_fuzzy_joining.py)

00:14.591

0.0

Subsampling for faster development (../examples/data_ops/14_subsampling.py)

00:13.383

0.0

Getting Started (../examples/00_getting_started.py)

00:11.405

0.0

Hands-On with Column Selection and Transformers (../examples/09_apply_to_cols.py)

00:10.343

0.0

Introduction to machine-learning pipelines with skrub DataOps (../examples/data_ops/11_data_ops_intro.py)

00:08.112

0.0

Use case: developing locally and deploying to production (../examples/data_ops/15_use_case.py)

00:05.756

0.0

Handling datetime features with the DatetimeEncoder (../examples/03_datetime_encoder.py)

00:04.789

0.0

Deduplicating misspelled categories (../examples/05_deduplication.py)

00:01.198

0.0