Feature engineering for electricity load forecasting#
The purpose of this notebook is to demonstrate how to use skrub
and
polars
to perform feature engineering for electricity load forecasting.
We will build a set of features (and targets) from different data sources:
Historical weather data for 10 medium to large urban areas in France;
Holidays and standard calendar features for France;
Historical electricity load data for the whole of France.
All these data sources cover a time range from March 23, 2021 to May 31, 2025.
Since our forecasting horizon is 24 hours, we consider that the future weather data is known at a chosen prediction time. Similarly, the holidays and calendar features are known at prediction time for any point in the future. We can also use the load data to engineer some lagged features and rolling aggregations.
The future values of the load data (with respect to the prediction time) are used as targets for the forecasting model.
Environment setup#
We need to install some extra dependencies for this notebook if needed (when running jupyterlite).
%pip install -q https://pypi.anaconda.org/ogrisel/simple/polars/1.24.0/polars-1.24.0-cp39-abi3-emscripten_3_1_58_wasm32.whl
%pip install -q altair holidays plotly nbformat skrub
ERROR: polars-1.24.0-cp39-abi3-emscripten_3_1_58_wasm32.whl is not a supported wheel on this platform.
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
The following 3 imports are only needed to workaround some limitations when using polars in a pyodide/jupyterlite notebook.
import tzdata # noqa: F401
import pandas as pd
from pyarrow.parquet import read_table
import altair
import polars as pl
import skrub
from pathlib import Path
import holidays
Shared time range for all historical data sources#
Let’s define a hourly time range from March 23, 2021 to May 31, 2025 that will be used to join the electricity load data and the weather data. The time range is in UTC timezone to avoid any ambiguity when joining with the weather data that is also in UTC.
We wrap the resulting polars dataframe in a skrub
DataOp to benefit
from the built-in skrub.TableReport
display in the notebook. Using the
skrub
DataOps will also be useful for other reasons: all
operations in this notebook are chained together in a directed
acyclic graph that is automatically tracked by skrub
. This allows us to
extract the resulting pipeline and apply it to new data later on, exactly
like a trained scikit-learn pipeline. The main difference is that we do so
incrementally and while eagerly executing and inspecting the results of each
step as is customary when working with dataframe libraries such as polars and
pandas in Jupyter notebooks.
historical_data_start_time = skrub.var(
"historical_data_start_time", pl.datetime(2021, 3, 23, hour=0, time_zone="UTC")
)
historical_data_end_time = skrub.var(
"historical_data_end_time", pl.datetime(2025, 5, 31, hour=23, time_zone="UTC")
)
@skrub.deferred
def build_historical_time_range(
historical_data_start_time,
historical_data_end_time,
time_interval="1h",
time_zone="UTC",
):
"""Define an historical time range shared by all data sources."""
return pl.DataFrame().with_columns(
pl.datetime_range(
start=historical_data_start_time,
end=historical_data_end_time,
time_zone=time_zone,
interval=time_interval,
).alias("time"),
)
time = build_historical_time_range(historical_data_start_time, historical_data_end_time)
time
Show graph
time |
---|
2021-03-23 00:00:00+00:00 |
2021-03-23 01:00:00+00:00 |
2021-03-23 02:00:00+00:00 |
2021-03-23 03:00:00+00:00 |
2021-03-23 04:00:00+00:00 |
2025-05-31 19:00:00+00:00 |
2025-05-31 20:00:00+00:00 |
2025-05-31 21:00:00+00:00 |
2025-05-31 22:00:00+00:00 |
2025-05-31 23:00:00+00:00 |
time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
36,744 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
If you run the above locally with pydot and graphviz installed, you can
visualize the expression graph of the time
variable by expanding the “Show
graph” button.
Let’s now load the data records for the time range defined above.
To avoid network issues when running this notebook, the necessary data files
have already been downloaded and saved in the datasets
folder. See the
README.md file for instructions to download the data manually if you want to
re-run this notebook with more recent data.
data_source_folder = skrub.var("data_source_folder", "../datasets")
for data_file in sorted(Path(data_source_folder.skb.eval()).iterdir()):
print(data_file)
../datasets/README.md
../datasets/Total Load - Day Ahead _ Actual_202101010000-202201010000.csv
../datasets/Total Load - Day Ahead _ Actual_202201010000-202301010000.csv
../datasets/Total Load - Day Ahead _ Actual_202301010000-202401010000.csv
../datasets/Total Load - Day Ahead _ Actual_202401010000-202501010000.csv
../datasets/Total Load - Day Ahead _ Actual_202501010000-202601010000.csv
../datasets/weather_bayonne.parquet
../datasets/weather_brest.parquet
../datasets/weather_lille.parquet
../datasets/weather_limoges.parquet
../datasets/weather_lyon.parquet
../datasets/weather_marseille.parquet
../datasets/weather_nantes.parquet
../datasets/weather_paris.parquet
../datasets/weather_strasbourg.parquet
../datasets/weather_toulouse.parquet
We define a list of 10 medium to large urban areas to approximately cover most regions in France with a slight focus on most populated regions that are likely to drive electricity demand.
city_names = skrub.var(
"city_names",
[
"paris",
"lyon",
"marseille",
"toulouse",
"lille",
"limoges",
"nantes",
"strasbourg",
"brest",
"bayonne",
],
)
@skrub.deferred
def load_weather_data(time, city_names, data_source_folder):
"""Load and horizontal stack historical weather forecast data for each city."""
all_city_weather = time
for city_name in city_names:
all_city_weather = all_city_weather.join(
pl.from_arrow(
read_table(f"{data_source_folder}/weather_{city_name}.parquet")
)
.with_columns([pl.col("time").dt.cast_time_unit("us")])
.rename(lambda x: x if x == "time" else "weather_" + x + "_" + city_name),
on="time",
)
return all_city_weather
all_city_weather = load_weather_data(time, city_names, data_source_folder)
all_city_weather
Show graph
time | weather_temperature_2m_paris | weather_precipitation_paris | weather_wind_speed_10m_paris | weather_cloud_cover_paris | weather_soil_moisture_1_to_3cm_paris | weather_relative_humidity_2m_paris | weather_temperature_2m_lyon | weather_precipitation_lyon | weather_wind_speed_10m_lyon | weather_cloud_cover_lyon | weather_soil_moisture_1_to_3cm_lyon | weather_relative_humidity_2m_lyon | weather_temperature_2m_marseille | weather_precipitation_marseille | weather_wind_speed_10m_marseille | weather_cloud_cover_marseille | weather_soil_moisture_1_to_3cm_marseille | weather_relative_humidity_2m_marseille | weather_temperature_2m_toulouse | weather_precipitation_toulouse | weather_wind_speed_10m_toulouse | weather_cloud_cover_toulouse | weather_soil_moisture_1_to_3cm_toulouse | weather_relative_humidity_2m_toulouse | weather_temperature_2m_lille | weather_precipitation_lille | weather_wind_speed_10m_lille | weather_cloud_cover_lille | weather_soil_moisture_1_to_3cm_lille | weather_relative_humidity_2m_lille | weather_temperature_2m_limoges | weather_precipitation_limoges | weather_wind_speed_10m_limoges | weather_cloud_cover_limoges | weather_soil_moisture_1_to_3cm_limoges | weather_relative_humidity_2m_limoges | weather_temperature_2m_nantes | weather_precipitation_nantes | weather_wind_speed_10m_nantes | weather_cloud_cover_nantes | weather_soil_moisture_1_to_3cm_nantes | weather_relative_humidity_2m_nantes | weather_temperature_2m_strasbourg | weather_precipitation_strasbourg | weather_wind_speed_10m_strasbourg | weather_cloud_cover_strasbourg | weather_soil_moisture_1_to_3cm_strasbourg | weather_relative_humidity_2m_strasbourg | weather_temperature_2m_brest | weather_precipitation_brest | weather_wind_speed_10m_brest | weather_cloud_cover_brest | weather_soil_moisture_1_to_3cm_brest | weather_relative_humidity_2m_brest | weather_temperature_2m_bayonne | weather_precipitation_bayonne | weather_wind_speed_10m_bayonne | weather_cloud_cover_bayonne | weather_soil_moisture_1_to_3cm_bayonne | weather_relative_humidity_2m_bayonne |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021-03-23 00:00:00+00:00 | 6.41 | 3.60 | 61.0 | 2.79 | 10.2 | 77.0 | 11.1 | 10.5 | 49.0 | 5.83 | 7.79 | 73.0 | 4.65 | 6.64 | 86.0 | -0.349 | 5.00 | 98.0 | 3.03 | 6.85 | 83.0 | 4.44 | 4.55 | 81.0 | 4.63 | 10.1 | 94.0 | 4.35 | 6.49 | 91.0 | ||||||||||||||||||||||||||||||
2021-03-23 01:00:00+00:00 | 6.01 | 0.00 | 3.55 | 6.00 | 62.0 | 2.38 | 0.00 | 8.94 | 6.00 | 78.0 | 10.7 | 0.00 | 11.2 | 0.00 | 50.0 | 5.28 | 0.00 | 6.70 | 5.00 | 74.0 | 4.30 | 0.00 | 7.10 | 22.0 | 88.0 | -0.899 | 0.00 | 5.15 | 10.0 | 98.0 | 2.63 | 0.00 | 9.42 | 7.00 | 81.0 | 3.64 | 0.00 | 4.21 | 66.0 | 84.0 | 5.03 | 0.00 | 11.2 | 6.00 | 95.0 | 3.90 | 0.00 | 5.48 | 19.0 | 92.0 | ||||||||||
2021-03-23 02:00:00+00:00 | 5.71 | 0.00 | 3.42 | 5.00 | 64.0 | 1.99 | 0.00 | 6.92 | 12.0 | 79.0 | 10.3 | 0.00 | 11.6 | 0.00 | 51.0 | 4.73 | 0.00 | 6.29 | 0.00 | 75.0 | 4.05 | 0.00 | 7.42 | 72.0 | 89.0 | -1.50 | 0.00 | 5.15 | 12.0 | 98.0 | 2.28 | 0.00 | 10.4 | 100. | 81.0 | 3.04 | 0.00 | 4.55 | 88.0 | 87.0 | 5.08 | 0.00 | 11.0 | 6.00 | 94.0 | 3.65 | 0.00 | 5.40 | 96.0 | 92.0 | ||||||||||
2021-03-23 03:00:00+00:00 | 5.36 | 0.00 | 3.24 | 11.0 | 65.0 | 1.63 | 0.00 | 5.40 | 84.0 | 79.0 | 9.93 | 0.00 | 11.6 | 0.00 | 51.0 | 4.33 | 0.00 | 5.51 | 0.00 | 75.0 | 3.80 | 0.00 | 7.99 | 73.0 | 90.0 | -1.95 | 0.00 | 5.32 | 17.0 | 98.0 | 1.78 | 0.00 | 10.5 | 100. | 85.0 | 2.74 | 0.00 | 4.69 | 100. | 88.0 | 4.63 | 0.00 | 10.5 | 5.00 | 93.0 | 3.40 | 0.00 | 5.09 | 67.0 | 92.0 | ||||||||||
2021-03-23 04:00:00+00:00 | 5.06 | 0.00 | 3.32 | 11.0 | 66.0 | 1.54 | 0.00 | 4.69 | 100. | 79.0 | 9.68 | 0.00 | 11.4 | 0.00 | 52.0 | 3.98 | 0.00 | 4.90 | 0.00 | 76.0 | 3.45 | 0.00 | 7.29 | 68.0 | 90.0 | -2.10 | 0.00 | 5.99 | 24.0 | 98.0 | 1.43 | 0.00 | 10.2 | 87.0 | 90.0 | 2.44 | 0.00 | 4.45 | 100. | 88.0 | 4.43 | 0.00 | 10.5 | 5.00 | 92.0 | 3.10 | 0.00 | 5.69 | 12.0 | 92.0 | ||||||||||
2025-05-31 19:00:00+00:00 | 24.3 | 0.100 | 9.01 | 100. | 0.268 | 60.0 | 21.9 | 0.00 | 3.55 | 100. | 0.274 | 64.0 | 19.9 | 0.00 | 10.5 | 0.00 | 0.139 | 87.0 | 29.3 | 0.00 | 6.99 | 7.00 | 0.208 | 45.0 | 24.0 | 0.00 | 14.4 | 100. | 0.267 | 59.0 | 25.6 | 0.00 | 10.6 | 19.0 | 0.157 | 53.0 | 21.7 | 0.00 | 12.2 | 100. | 0.173 | 54.0 | 19.9 | 0.00 | 10.7 | 84.0 | 0.315 | 79.0 | 17.5 | 0.00 | 12.1 | 5.00 | 0.168 | 73.0 | 18.8 | 0.00 | 12.1 | 100. | 0.238 | 83.0 |
2025-05-31 20:00:00+00:00 | 23.4 | 0.00 | 9.61 | 100. | 0.269 | 62.0 | 21.6 | 0.00 | 2.55 | 80.0 | 0.273 | 72.0 | 19.7 | 0.00 | 6.62 | 100. | 0.139 | 87.0 | 27.4 | 0.00 | 5.40 | 100. | 0.208 | 54.0 | 21.4 | 0.00 | 13.0 | 100. | 0.267 | 61.0 | 23.3 | 0.00 | 8.65 | 23.0 | 0.156 | 66.0 | 20.4 | 0.00 | 10.3 | 100. | 0.173 | 58.0 | 20.1 | 0.00 | 6.29 | 94.0 | 0.306 | 75.0 | 16.3 | 0.00 | 9.11 | 99.0 | 0.168 | 77.0 | 18.5 | 0.00 | 11.6 | 100. | 0.239 | 84.0 |
2025-05-31 21:00:00+00:00 | 22.5 | 0.00 | 13.9 | 100. | 0.271 | 65.0 | 21.1 | 0.00 | 2.55 | 71.0 | 0.273 | 76.0 | 17.9 | 0.00 | 7.39 | 100. | 0.139 | 96.0 | 26.0 | 0.00 | 4.61 | 6.00 | 0.210 | 59.0 | 21.1 | 0.00 | 15.5 | 100. | 0.267 | 61.0 | 21.6 | 0.00 | 7.64 | 100. | 0.155 | 73.0 | 19.3 | 0.00 | 6.49 | 100. | 0.174 | 63.0 | 19.4 | 0.00 | 4.35 | 94.0 | 0.303 | 78.0 | 15.5 | 0.00 | 7.56 | 93.0 | 0.169 | 84.0 | 18.2 | 0.00 | 10.1 | 100. | 0.239 | 84.0 |
2025-05-31 22:00:00+00:00 | 21.0 | 0.00 | 9.69 | 95.0 | 0.271 | 63.0 | 20.7 | 0.00 | 3.62 | 12.0 | 0.273 | 80.0 | 17.6 | 0.00 | 4.69 | 100. | 0.139 | 96.0 | 24.6 | 0.00 | 3.40 | 100. | 0.211 | 71.0 | 18.6 | 0.00 | 10.4 | 38.0 | 0.267 | 68.0 | 20.3 | 0.00 | 5.40 | 100. | 0.155 | 81.0 | 18.5 | 0.00 | 6.73 | 100. | 0.174 | 75.0 | 19.4 | 0.00 | 3.10 | 100. | 0.300 | 80.0 | 15.6 | 0.00 | 9.00 | 100. | 0.170 | 82.0 | 17.6 | 0.00 | 4.45 | 100. | 0.240 | 90.0 |
2025-05-31 23:00:00+00:00 | 20.0 | 0.00 | 10.3 | 90.0 | 0.272 | 64.0 | 20.0 | 0.00 | 3.26 | 63.0 | 0.273 | 83.0 | 17.6 | 0.00 | 2.60 | 100. | 0.139 | 96.0 | 23.5 | 0.00 | 4.02 | 100. | 0.213 | 80.0 | 16.7 | 0.00 | 10.8 | 18.0 | 0.267 | 78.0 | 19.2 | 0.00 | 4.74 | 16.0 | 0.155 | 87.0 | 17.7 | 0.00 | 8.56 | 72.0 | 0.175 | 81.0 | 19.3 | 0.00 | 3.62 | 100. | 0.297 | 81.0 | 15.6 | 0.00 | 5.51 | 100. | 0.171 | 81.0 | 18.2 | 0.00 | 8.09 | 100. | 0.240 | 83.0 |
time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
36,744 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
weather_temperature_2m_paris
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,439 (3.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 13.6 ± 6.99
- Median ± IQR
- 13.2 ± 9.80
- Min | Max
- -5.13 | 40.6
weather_precipitation_paris
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
135 (0.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0911 ± 0.541
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 29.5
weather_wind_speed_10m_paris
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,777 (4.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.0 ± 5.28
- Median ± IQR
- 9.29 ± 7.18
- Min | Max
- 0.00 | 50.1
weather_cloud_cover_paris
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 69.2 ± 39.9
- Median ± IQR
- 97.0 ± 71.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_paris
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
277 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.298 ± 0.0397
- Median ± IQR
- 0.304 ± 0.0440
- Min | Max
- 0.139 | 0.436
weather_relative_humidity_2m_paris
Float32- Null values
- 0 (0.0%)
- Unique values
-
91 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 69.7 ± 18.1
- Median ± IQR
- 73.0 ± 27.0
- Min | Max
- 10.0 | 100.
weather_temperature_2m_lyon
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,565 (4.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.1 ± 7.96
- Median ± IQR
- 13.8 ± 11.3
- Min | Max
- -5.89 | 40.3
weather_precipitation_lyon
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
150 (0.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0989 ± 0.608
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 26.3
weather_wind_speed_10m_lyon
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,729 (4.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.07 ± 6.04
- Median ± IQR
- 6.48 ± 7.67
- Min | Max
- 0.00 | 43.2
weather_cloud_cover_lyon
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 64.4 ± 41.8
- Median ± IQR
- 92.0 ± 88.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_lyon
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
290 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.296 ± 0.0380
- Median ± IQR
- 0.304 ± 0.0330
- Min | Max
- 0.124 | 0.441
weather_relative_humidity_2m_lyon
Float32- Null values
- 0 (0.0%)
- Unique values
-
89 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 68.6 ± 18.7
- Median ± IQR
- 71.0 ± 28.0
- Min | Max
- 12.0 | 100.
weather_temperature_2m_marseille
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,276 (3.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 17.5 ± 6.14
- Median ± IQR
- 17.1 ± 9.71
- Min | Max
- 0.317 | 36.6
weather_precipitation_marseille
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0511 ± 0.381
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 21.0
weather_wind_speed_10m_marseille
Float32- Null values
- 0 (0.0%)
- Unique values
-
4,018 (10.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.8 ± 10.8
- Median ± IQR
- 11.8 ± 12.3
- Min | Max
- 0.00 | 74.6
weather_cloud_cover_marseille
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 46.5 ± 44.5
- Median ± IQR
- 31.0 ± 100.
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_marseille
Float32- Null values
- 14,480 (39.4%)
- Unique values
-
354 (1.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.226 ± 0.0748
- Median ± IQR
- 0.223 ± 0.119
- Min | Max
- 0.100 | 0.459
weather_relative_humidity_2m_marseille
Float32- Null values
- 0 (0.0%)
- Unique values
-
86 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 63.4 ± 13.2
- Median ± IQR
- 64.0 ± 19.0
- Min | Max
- 14.0 | 99.0
weather_temperature_2m_toulouse
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,513 (4.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 15.2 ± 7.48
- Median ± IQR
- 14.6 ± 10.5
- Min | Max
- -5.33 | 41.2
weather_precipitation_toulouse
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
121 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0737 ± 0.586
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 36.9
weather_wind_speed_10m_toulouse
Float32- Null values
- 0 (0.0%)
- Unique values
-
2,123 (5.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.88 ± 6.48
- Median ± IQR
- 8.65 ± 8.61
- Min | Max
- 0.00 | 44.6
weather_cloud_cover_toulouse
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 62.1 ± 42.2
- Median ± IQR
- 86.0 ± 91.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_toulouse
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
310 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.271 ± 0.0505
- Median ± IQR
- 0.285 ± 0.0540
- Min | Max
- 0.104 | 0.454
weather_relative_humidity_2m_toulouse
Float32- Null values
- 0 (0.0%)
- Unique values
-
93 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 69.7 ± 18.7
- Median ± IQR
- 73.0 ± 29.0
- Min | Max
- 8.00 | 100.
weather_temperature_2m_lille
Float32- Null values
- 0 (0.0%)
- Unique values
-
2,081 (5.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.2 ± 6.58
- Median ± IQR
- 11.8 ± 9.05
- Min | Max
- -6.32 | 40.8
weather_precipitation_lille
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
75 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0974 ± 0.417
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 14.7
weather_wind_speed_10m_lille
Float32- Null values
- 0 (0.0%)
- Unique values
-
2,536 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.9 ± 6.60
- Median ± IQR
- 11.7 ± 8.47
- Min | Max
- 0.00 | 61.9
weather_cloud_cover_lille
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 67.5 ± 40.4
- Median ± IQR
- 96.0 ± 78.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_lille
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
209 (0.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.306 ± 0.0315
- Median ± IQR
- 0.311 ± 0.0400
- Min | Max
- 0.203 | 0.422
weather_relative_humidity_2m_lille
Float32- Null values
- 0 (0.0%)
- Unique values
-
96 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 74.6 ± 17.1
- Median ± IQR
- 79.0 ± 24.0
- Min | Max
- 0.00 | 100.
weather_temperature_2m_limoges
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,572 (4.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.7 ± 7.35
- Median ± IQR
- 12.1 ± 9.80
- Min | Max
- -7.70 | 39.7
weather_precipitation_limoges
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
153 (0.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.122 ± 0.621
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 45.5
weather_wind_speed_10m_limoges
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,359 (3.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 7.57 ± 4.77
- Median ± IQR
- 6.49 ± 6.90
- Min | Max
- 0.00 | 33.9
weather_cloud_cover_limoges
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 66.4 ± 40.8
- Median ± IQR
- 93.0 ± 81.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_limoges
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
302 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.282 ± 0.0554
- Median ± IQR
- 0.298 ± 0.0650
- Min | Max
- 0.115 | 0.450
weather_relative_humidity_2m_limoges
Float32- Null values
- 0 (0.0%)
- Unique values
-
93 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 75.2 ± 19.9
- Median ± IQR
- 81.0 ± 29.0
- Min | Max
- 8.00 | 100.
weather_temperature_2m_nantes
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,539 (4.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 13.8 ± 6.65
- Median ± IQR
- 13.3 ± 8.51
- Min | Max
- -3.86 | 43.4
weather_precipitation_nantes
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
112 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.0866 ± 0.436
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 14.1
weather_wind_speed_10m_nantes
Float32- Null values
- 0 (0.0%)
- Unique values
-
2,834 (7.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 13.4 ± 6.91
- Median ± IQR
- 12.0 ± 8.37
- Min | Max
- 0.00 | 58.6
weather_cloud_cover_nantes
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 65.0 ± 41.3
- Median ± IQR
- 93.0 ± 84.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_nantes
Float32- Null values
- 14,480 (39.4%)
- Unique values
-
314 (0.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.276 ± 0.0658
- Median ± IQR
- 0.295 ± 0.0840
- Min | Max
- 0.110 | 0.423
weather_relative_humidity_2m_nantes
Float32- Null values
- 0 (0.0%)
- Unique values
-
94 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 74.0 ± 17.3
- Median ± IQR
- 78.0 ± 25.0
- Min | Max
- 7.00 | 100.
weather_temperature_2m_strasbourg
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,525 (4.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.7 ± 7.74
- Median ± IQR
- 12.3 ± 11.0
- Min | Max
- -9.31 | 38.8
weather_precipitation_strasbourg
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
128 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.102 ± 0.516
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 22.1
weather_wind_speed_10m_strasbourg
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,523 (4.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.45 ± 5.05
- Median ± IQR
- 7.52 ± 6.92
- Min | Max
- 0.00 | 38.1
weather_cloud_cover_strasbourg
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 69.7 ± 40.2
- Median ± IQR
- 98.0 ± 72.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_strasbourg
Float32- Null values
- 14,414 (39.2%)
- Unique values
-
304 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.329 ± 0.0519
- Median ± IQR
- 0.343 ± 0.0530
- Min | Max
- 0.159 | 0.468
weather_relative_humidity_2m_strasbourg
Float32- Null values
- 0 (0.0%)
- Unique values
-
88 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 71.9 ± 18.4
- Median ± IQR
- 75.0 ± 28.0
- Min | Max
- 13.0 | 100.
weather_temperature_2m_brest
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,265 (3.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.9 ± 4.89
- Median ± IQR
- 12.6 ± 6.25
- Min | Max
- -2.33 | 40.5
weather_precipitation_brest
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
108 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.106 ± 0.431
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 12.7
weather_wind_speed_10m_brest
Float32- Null values
- 0 (0.0%)
- Unique values
-
3,782 (10.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 16.2 ± 8.89
- Median ± IQR
- 14.5 ± 11.8
- Min | Max
- 0.00 | 67.3
weather_cloud_cover_brest
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
102 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 67.9 ± 39.8
- Median ± IQR
- 96.0 ± 75.0
- Min | Max
- 0.00 | 101.
weather_soil_moisture_1_to_3cm_brest
Float32- Null values
- 14,480 (39.4%)
- Unique values
-
279 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.266 ± 0.0572
- Median ± IQR
- 0.277 ± 0.0740
- Min | Max
- 0.116 | 0.409
weather_relative_humidity_2m_brest
Float32- Null values
- 0 (0.0%)
- Unique values
-
90 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 78.2 ± 13.9
- Median ± IQR
- 81.0 ± 20.0
- Min | Max
- 10.0 | 100.
weather_temperature_2m_bayonne
Float32- Null values
- 0 (0.0%)
- Unique values
-
1,554 (4.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 15.0 ± 6.40
- Median ± IQR
- 14.9 ± 8.47
- Min | Max
- -3.32 | 42.4
weather_precipitation_bayonne
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
131 (0.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.144 ± 0.551
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 18.5
weather_wind_speed_10m_bayonne
Float32- Null values
- 0 (0.0%)
- Unique values
-
2,488 (6.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.9 ± 6.71
- Median ± IQR
- 9.36 ± 8.07
- Min | Max
- 0.00 | 51.5
weather_cloud_cover_bayonne
Float32- Null values
- 1 (< 0.1%)
- Unique values
-
103 (0.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 66.3 ± 40.8
- Median ± IQR
- 94.0 ± 80.0
- Min | Max
- -1.00 | 101.
weather_soil_moisture_1_to_3cm_bayonne
Float32- Null values
- 14,480 (39.4%)
- Unique values
-
299 (0.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 0.276 ± 0.0509
- Median ± IQR
- 0.283 ± 0.0470
- Min | Max
- 0.0970 | 0.414
weather_relative_humidity_2m_bayonne
Float32- Null values
- 0 (0.0%)
- Unique values
-
91 (0.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 76.2 ± 16.0
- Median ± IQR
- 79.0 ± 25.0
- Min | Max
- 9.00 | 100.
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
1 | weather_temperature_2m_paris | Float32 | False | 0 (0.0%) | 1439 (3.9%) | 13.6 | 6.99 | -5.13 | 13.2 | 40.6 |
2 | weather_precipitation_paris | Float32 | False | 1 (< 0.1%) | 135 (0.4%) | 0.0911 | 0.541 | 0.00 | 0.00 | 29.5 |
3 | weather_wind_speed_10m_paris | Float32 | False | 0 (0.0%) | 1777 (4.8%) | 10.0 | 5.28 | 0.00 | 9.29 | 50.1 |
4 | weather_cloud_cover_paris | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 69.2 | 39.9 | -1.00 | 97.0 | 101. |
5 | weather_soil_moisture_1_to_3cm_paris | Float32 | False | 14414 (39.2%) | 277 (0.8%) | 0.298 | 0.0397 | 0.139 | 0.304 | 0.436 |
6 | weather_relative_humidity_2m_paris | Float32 | False | 0 (0.0%) | 91 (0.2%) | 69.7 | 18.1 | 10.0 | 73.0 | 100. |
7 | weather_temperature_2m_lyon | Float32 | False | 0 (0.0%) | 1565 (4.3%) | 14.1 | 7.96 | -5.89 | 13.8 | 40.3 |
8 | weather_precipitation_lyon | Float32 | False | 1 (< 0.1%) | 150 (0.4%) | 0.0989 | 0.608 | 0.00 | 0.00 | 26.3 |
9 | weather_wind_speed_10m_lyon | Float32 | False | 0 (0.0%) | 1729 (4.7%) | 8.07 | 6.04 | 0.00 | 6.48 | 43.2 |
10 | weather_cloud_cover_lyon | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 64.4 | 41.8 | -1.00 | 92.0 | 101. |
11 | weather_soil_moisture_1_to_3cm_lyon | Float32 | False | 14414 (39.2%) | 290 (0.8%) | 0.296 | 0.0380 | 0.124 | 0.304 | 0.441 |
12 | weather_relative_humidity_2m_lyon | Float32 | False | 0 (0.0%) | 89 (0.2%) | 68.6 | 18.7 | 12.0 | 71.0 | 100. |
13 | weather_temperature_2m_marseille | Float32 | False | 0 (0.0%) | 1276 (3.5%) | 17.5 | 6.14 | 0.317 | 17.1 | 36.6 |
14 | weather_precipitation_marseille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 0.0511 | 0.381 | 0.00 | 0.00 | 21.0 |
15 | weather_wind_speed_10m_marseille | Float32 | False | 0 (0.0%) | 4018 (10.9%) | 14.8 | 10.8 | 0.00 | 11.8 | 74.6 |
16 | weather_cloud_cover_marseille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 46.5 | 44.5 | -1.00 | 31.0 | 101. |
17 | weather_soil_moisture_1_to_3cm_marseille | Float32 | False | 14480 (39.4%) | 354 (1.0%) | 0.226 | 0.0748 | 0.100 | 0.223 | 0.459 |
18 | weather_relative_humidity_2m_marseille | Float32 | False | 0 (0.0%) | 86 (0.2%) | 63.4 | 13.2 | 14.0 | 64.0 | 99.0 |
19 | weather_temperature_2m_toulouse | Float32 | False | 0 (0.0%) | 1513 (4.1%) | 15.2 | 7.48 | -5.33 | 14.6 | 41.2 |
20 | weather_precipitation_toulouse | Float32 | False | 1 (< 0.1%) | 121 (0.3%) | 0.0737 | 0.586 | 0.00 | 0.00 | 36.9 |
21 | weather_wind_speed_10m_toulouse | Float32 | False | 0 (0.0%) | 2123 (5.8%) | 9.88 | 6.48 | 0.00 | 8.65 | 44.6 |
22 | weather_cloud_cover_toulouse | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 62.1 | 42.2 | -1.00 | 86.0 | 101. |
23 | weather_soil_moisture_1_to_3cm_toulouse | Float32 | False | 14414 (39.2%) | 310 (0.8%) | 0.271 | 0.0505 | 0.104 | 0.285 | 0.454 |
24 | weather_relative_humidity_2m_toulouse | Float32 | False | 0 (0.0%) | 93 (0.3%) | 69.7 | 18.7 | 8.00 | 73.0 | 100. |
25 | weather_temperature_2m_lille | Float32 | False | 0 (0.0%) | 2081 (5.7%) | 12.2 | 6.58 | -6.32 | 11.8 | 40.8 |
26 | weather_precipitation_lille | Float32 | False | 1 (< 0.1%) | 75 (0.2%) | 0.0974 | 0.417 | 0.00 | 0.00 | 14.7 |
27 | weather_wind_speed_10m_lille | Float32 | False | 0 (0.0%) | 2536 (6.9%) | 12.9 | 6.60 | 0.00 | 11.7 | 61.9 |
28 | weather_cloud_cover_lille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 67.5 | 40.4 | -1.00 | 96.0 | 101. |
29 | weather_soil_moisture_1_to_3cm_lille | Float32 | False | 14414 (39.2%) | 209 (0.6%) | 0.306 | 0.0315 | 0.203 | 0.311 | 0.422 |
30 | weather_relative_humidity_2m_lille | Float32 | False | 0 (0.0%) | 96 (0.3%) | 74.6 | 17.1 | 0.00 | 79.0 | 100. |
31 | weather_temperature_2m_limoges | Float32 | False | 0 (0.0%) | 1572 (4.3%) | 12.7 | 7.35 | -7.70 | 12.1 | 39.7 |
32 | weather_precipitation_limoges | Float32 | False | 1 (< 0.1%) | 153 (0.4%) | 0.122 | 0.621 | 0.00 | 0.00 | 45.5 |
33 | weather_wind_speed_10m_limoges | Float32 | False | 0 (0.0%) | 1359 (3.7%) | 7.57 | 4.77 | 0.00 | 6.49 | 33.9 |
34 | weather_cloud_cover_limoges | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 66.4 | 40.8 | -1.00 | 93.0 | 101. |
35 | weather_soil_moisture_1_to_3cm_limoges | Float32 | False | 14414 (39.2%) | 302 (0.8%) | 0.282 | 0.0554 | 0.115 | 0.298 | 0.450 |
36 | weather_relative_humidity_2m_limoges | Float32 | False | 0 (0.0%) | 93 (0.3%) | 75.2 | 19.9 | 8.00 | 81.0 | 100. |
37 | weather_temperature_2m_nantes | Float32 | False | 0 (0.0%) | 1539 (4.2%) | 13.8 | 6.65 | -3.86 | 13.3 | 43.4 |
38 | weather_precipitation_nantes | Float32 | False | 1 (< 0.1%) | 112 (0.3%) | 0.0866 | 0.436 | 0.00 | 0.00 | 14.1 |
39 | weather_wind_speed_10m_nantes | Float32 | False | 0 (0.0%) | 2834 (7.7%) | 13.4 | 6.91 | 0.00 | 12.0 | 58.6 |
40 | weather_cloud_cover_nantes | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 65.0 | 41.3 | -1.00 | 93.0 | 101. |
41 | weather_soil_moisture_1_to_3cm_nantes | Float32 | False | 14480 (39.4%) | 314 (0.9%) | 0.276 | 0.0658 | 0.110 | 0.295 | 0.423 |
42 | weather_relative_humidity_2m_nantes | Float32 | False | 0 (0.0%) | 94 (0.3%) | 74.0 | 17.3 | 7.00 | 78.0 | 100. |
43 | weather_temperature_2m_strasbourg | Float32 | False | 0 (0.0%) | 1525 (4.2%) | 12.7 | 7.74 | -9.31 | 12.3 | 38.8 |
44 | weather_precipitation_strasbourg | Float32 | False | 1 (< 0.1%) | 128 (0.3%) | 0.102 | 0.516 | 0.00 | 0.00 | 22.1 |
45 | weather_wind_speed_10m_strasbourg | Float32 | False | 0 (0.0%) | 1523 (4.1%) | 8.45 | 5.05 | 0.00 | 7.52 | 38.1 |
46 | weather_cloud_cover_strasbourg | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 69.7 | 40.2 | -1.00 | 98.0 | 101. |
47 | weather_soil_moisture_1_to_3cm_strasbourg | Float32 | False | 14414 (39.2%) | 304 (0.8%) | 0.329 | 0.0519 | 0.159 | 0.343 | 0.468 |
48 | weather_relative_humidity_2m_strasbourg | Float32 | False | 0 (0.0%) | 88 (0.2%) | 71.9 | 18.4 | 13.0 | 75.0 | 100. |
49 | weather_temperature_2m_brest | Float32 | False | 0 (0.0%) | 1265 (3.4%) | 12.9 | 4.89 | -2.33 | 12.6 | 40.5 |
50 | weather_precipitation_brest | Float32 | False | 1 (< 0.1%) | 108 (0.3%) | 0.106 | 0.431 | 0.00 | 0.00 | 12.7 |
51 | weather_wind_speed_10m_brest | Float32 | False | 0 (0.0%) | 3782 (10.3%) | 16.2 | 8.89 | 0.00 | 14.5 | 67.3 |
52 | weather_cloud_cover_brest | Float32 | False | 1 (< 0.1%) | 102 (0.3%) | 67.9 | 39.8 | 0.00 | 96.0 | 101. |
53 | weather_soil_moisture_1_to_3cm_brest | Float32 | False | 14480 (39.4%) | 279 (0.8%) | 0.266 | 0.0572 | 0.116 | 0.277 | 0.409 |
54 | weather_relative_humidity_2m_brest | Float32 | False | 0 (0.0%) | 90 (0.2%) | 78.2 | 13.9 | 10.0 | 81.0 | 100. |
55 | weather_temperature_2m_bayonne | Float32 | False | 0 (0.0%) | 1554 (4.2%) | 15.0 | 6.40 | -3.32 | 14.9 | 42.4 |
56 | weather_precipitation_bayonne | Float32 | False | 1 (< 0.1%) | 131 (0.4%) | 0.144 | 0.551 | 0.00 | 0.00 | 18.5 |
57 | weather_wind_speed_10m_bayonne | Float32 | False | 0 (0.0%) | 2488 (6.8%) | 10.9 | 6.71 | 0.00 | 9.36 | 51.5 |
58 | weather_cloud_cover_bayonne | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 66.3 | 40.8 | -1.00 | 94.0 | 101. |
59 | weather_soil_moisture_1_to_3cm_bayonne | Float32 | False | 14480 (39.4%) | 299 (0.8%) | 0.276 | 0.0509 | 0.0970 | 0.283 | 0.414 |
60 | weather_relative_humidity_2m_bayonne | Float32 | False | 0 (0.0%) | 91 (0.2%) | 76.2 | 16.0 | 9.00 | 79.0 | 100. |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Calendar and holidays features#
We leverage the holidays
package to enrich the time range with some calendar
features such as public holidays in France. We also add some features that are useful
for time series forecasting such as the day of the week, the day of the year, and the
hour of the day.
We want to use the holidays
package to enrich the time range with some calendar
features such as public holidays in France. In addition, we want to use skrub
’s
DatetimeEncoder
to add some features that are useful for time series forecasting
such as the calendar year, month, day, hour, the day of the week and the day of the
year.
Note that the holidays
package requires us to extract the date for the French
timezone.
Similarly for the calendar features: all the time features are extracted from the time in the French timezone, since it is likely that electricity usage patterns are influenced by inhabitants’ daily routines aligned with the local timezone.
Exercise#
Let’s first create some calendar features using skrub
’s DatetimeEncoder
.
Create a
DatetimeEncoder
object and, by looking at the documentation, make sure to add the weekday and the day of the year. Do not add the total seconds since the Unix epoch. You can refer to this link: https://skrub-data.org/stable/reference/generated/skrub.DatetimeEncoder.htmlAs a first operation, we wish to rename the
time
column tocal
such that all the columns corresponding to some calendar features will be prefixed withcal_
. You can simply call therename
method (cf. https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.rename.html) becausetime
can be seen as a polars dataframe.Now, we wish to apply the encoder to the
time
dataframe. Refer to the following link for all details: https://skrub-data.org/stable/reference/generated/skrub.DataOp.skb.apply.htmlLet’s call the resulting skrub
DataOp
time_encoded
and check the output representation to check if the preview looks what we expect.
from skrub import DatetimeEncoder
Solution#
datetime_encoder = DatetimeEncoder(
add_weekday=True, add_day_of_year=True, add_total_seconds=False
)
time_encoded = time.rename({"time": "cal"}).skb.apply(datetime_encoder)
time_encoded
Show graph
cal_year | cal_month | cal_day | cal_hour | cal_weekday | cal_day_of_year |
---|---|---|---|---|---|
2.02e+03 | 3.00 | 23.0 | 0.00 | 2.00 | 82.0 |
2.02e+03 | 3.00 | 23.0 | 1.00 | 2.00 | 82.0 |
2.02e+03 | 3.00 | 23.0 | 2.00 | 2.00 | 82.0 |
2.02e+03 | 3.00 | 23.0 | 3.00 | 2.00 | 82.0 |
2.02e+03 | 3.00 | 23.0 | 4.00 | 2.00 | 82.0 |
2.02e+03 | 5.00 | 31.0 | 19.0 | 6.00 | 151. |
2.02e+03 | 5.00 | 31.0 | 20.0 | 6.00 | 151. |
2.02e+03 | 5.00 | 31.0 | 21.0 | 6.00 | 151. |
2.02e+03 | 5.00 | 31.0 | 22.0 | 6.00 | 151. |
2.02e+03 | 5.00 | 31.0 | 23.0 | 6.00 | 151. |
cal_year
Float32- Null values
- 0 (0.0%)
- Unique values
- 5 (< 0.1%)
- Mean ± Std
- 2.02e+03 ± 1.26
- Median ± IQR
- 2.02e+03 ± 2.00
- Min | Max
- 2.02e+03 | 2.02e+03
cal_month
Float32- Null values
- 0 (0.0%)
- Unique values
- 12 (< 0.1%)
- Mean ± Std
- 6.42 ± 3.40
- Median ± IQR
- 6.00 ± 5.00
- Min | Max
- 1.00 | 12.0
cal_day
Float32- Null values
- 0 (0.0%)
- Unique values
- 31 (< 0.1%)
- Mean ± Std
- 15.8 ± 8.82
- Median ± IQR
- 16.0 ± 15.0
- Min | Max
- 1.00 | 31.0
cal_hour
Float32- Null values
- 0 (0.0%)
- Unique values
- 24 (< 0.1%)
- Mean ± Std
- 11.5 ± 6.92
- Median ± IQR
- 12.0 ± 11.0
- Min | Max
- 0.00 | 23.0
cal_weekday
Float32- Null values
- 0 (0.0%)
- Unique values
- 7 (< 0.1%)
- Mean ± Std
- 4.00 ± 2.00
- Median ± IQR
- 4.00 ± 4.00
- Min | Max
- 1.00 | 7.00
cal_day_of_year
Float32- Null values
- 0 (0.0%)
- Unique values
-
366 (1.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 180. ± 104.
- Median ± IQR
- 174. ± 177.
- Min | Max
- 1.00 | 366.
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | cal_year | Float32 | True | 0 (0.0%) | 5 (< 0.1%) | 2.02e+03 | 1.26 | 2.02e+03 | 2.02e+03 | 2.02e+03 |
1 | cal_month | Float32 | False | 0 (0.0%) | 12 (< 0.1%) | 6.42 | 3.40 | 1.00 | 6.00 | 12.0 |
2 | cal_day | Float32 | False | 0 (0.0%) | 31 (< 0.1%) | 15.8 | 8.82 | 1.00 | 16.0 | 31.0 |
3 | cal_hour | Float32 | False | 0 (0.0%) | 24 (< 0.1%) | 11.5 | 6.92 | 0.00 | 12.0 | 23.0 |
4 | cal_weekday | Float32 | False | 0 (0.0%) | 7 (< 0.1%) | 4.00 | 2.00 | 1.00 | 4.00 | 7.00 |
5 | cal_day_of_year | Float32 | False | 0 (0.0%) | 366 (1.0%) | 180. | 104. | 1.00 | 174. | 366. |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Exercise#
Now, let’s create a processing function that is going to be decorated with the
@skrub.deferred
decorator. This function should:
Take the
time
dataframe as an input.Convert the “time” column to the French/Paris timezone.
Extract the French holidays by calling
holidays.country_holidays
. For this function, you need to extract the minimum and maximum year from the “time” column.Finally, you need to add if a date in holiday is a French holiday as a feature. You can call this column
cal_is_holiday
.Apply this function to the
time
DataOp
and call the resulting variableis_french_holiday
.Finally, we wish to concatenate the
time_encoded
andis_french_holiday
DataOps
using the.skb.concat
method.
Solution#
@skrub.deferred
def prepare_holidays(time):
fr_time = pl.col("time").dt.convert_time_zone("Europe/Paris")
fr_year_min = time.select(fr_time.dt.year().min()).item()
fr_year_max = time.select(fr_time.dt.year().max()).item()
holidays_fr = holidays.country_holidays(
"FR", years=range(fr_year_min, fr_year_max + 1)
)
return time.select(
fr_time.dt.date().is_in(holidays_fr.keys()).alias("cal_is_holiday"),
)
is_french_holiday = prepare_holidays(time)
is_french_holiday
calendar = time.skb.concat([time_encoded, is_french_holiday], axis=1)
calendar
Show graph
time | cal_year | cal_month | cal_day | cal_hour | cal_weekday | cal_day_of_year | cal_is_holiday |
---|---|---|---|---|---|---|---|
2021-03-23 00:00:00+00:00 | 2.02e+03 | 3.00 | 23.0 | 0.00 | 2.00 | 82.0 | 0 |
2021-03-23 01:00:00+00:00 | 2.02e+03 | 3.00 | 23.0 | 1.00 | 2.00 | 82.0 | 0 |
2021-03-23 02:00:00+00:00 | 2.02e+03 | 3.00 | 23.0 | 2.00 | 2.00 | 82.0 | 0 |
2021-03-23 03:00:00+00:00 | 2.02e+03 | 3.00 | 23.0 | 3.00 | 2.00 | 82.0 | 0 |
2021-03-23 04:00:00+00:00 | 2.02e+03 | 3.00 | 23.0 | 4.00 | 2.00 | 82.0 | 0 |
2025-05-31 19:00:00+00:00 | 2.02e+03 | 5.00 | 31.0 | 19.0 | 6.00 | 151. | 0 |
2025-05-31 20:00:00+00:00 | 2.02e+03 | 5.00 | 31.0 | 20.0 | 6.00 | 151. | 0 |
2025-05-31 21:00:00+00:00 | 2.02e+03 | 5.00 | 31.0 | 21.0 | 6.00 | 151. | 0 |
2025-05-31 22:00:00+00:00 | 2.02e+03 | 5.00 | 31.0 | 22.0 | 6.00 | 151. | 0 |
2025-05-31 23:00:00+00:00 | 2.02e+03 | 5.00 | 31.0 | 23.0 | 6.00 | 151. | 0 |
time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
36,744 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
cal_year
Float32- Null values
- 0 (0.0%)
- Unique values
- 5 (< 0.1%)
- Mean ± Std
- 2.02e+03 ± 1.26
- Median ± IQR
- 2.02e+03 ± 2.00
- Min | Max
- 2.02e+03 | 2.02e+03
cal_month
Float32- Null values
- 0 (0.0%)
- Unique values
- 12 (< 0.1%)
- Mean ± Std
- 6.42 ± 3.40
- Median ± IQR
- 6.00 ± 5.00
- Min | Max
- 1.00 | 12.0
cal_day
Float32- Null values
- 0 (0.0%)
- Unique values
- 31 (< 0.1%)
- Mean ± Std
- 15.8 ± 8.82
- Median ± IQR
- 16.0 ± 15.0
- Min | Max
- 1.00 | 31.0
cal_hour
Float32- Null values
- 0 (0.0%)
- Unique values
- 24 (< 0.1%)
- Mean ± Std
- 11.5 ± 6.92
- Median ± IQR
- 12.0 ± 11.0
- Min | Max
- 0.00 | 23.0
cal_weekday
Float32- Null values
- 0 (0.0%)
- Unique values
- 7 (< 0.1%)
- Mean ± Std
- 4.00 ± 2.00
- Median ± IQR
- 4.00 ± 4.00
- Min | Max
- 1.00 | 7.00
cal_day_of_year
Float32- Null values
- 0 (0.0%)
- Unique values
-
366 (1.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 180. ± 104.
- Median ± IQR
- 174. ± 177.
- Min | Max
- 1.00 | 366.
cal_is_holiday
Boolean- Null values
- 0 (0.0%)
- Unique values
- 2 (< 0.1%)
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
1 | cal_year | Float32 | True | 0 (0.0%) | 5 (< 0.1%) | 2.02e+03 | 1.26 | 2.02e+03 | 2.02e+03 | 2.02e+03 |
2 | cal_month | Float32 | False | 0 (0.0%) | 12 (< 0.1%) | 6.42 | 3.40 | 1.00 | 6.00 | 12.0 |
3 | cal_day | Float32 | False | 0 (0.0%) | 31 (< 0.1%) | 15.8 | 8.82 | 1.00 | 16.0 | 31.0 |
4 | cal_hour | Float32 | False | 0 (0.0%) | 24 (< 0.1%) | 11.5 | 6.92 | 0.00 | 12.0 | 23.0 |
5 | cal_weekday | Float32 | False | 0 (0.0%) | 7 (< 0.1%) | 4.00 | 2.00 | 1.00 | 4.00 | 7.00 |
6 | cal_day_of_year | Float32 | False | 0 (0.0%) | 366 (1.0%) | 180. | 104. | 1.00 | 174. | 366. |
7 | cal_is_holiday | Boolean | False | 0 (0.0%) | 2 (< 0.1%) |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Electricity load data#
Finally, we load the electricity load data. This data will both be used as a target variable but also to craft some lagged and window-aggregated features.
@skrub.deferred
def load_electricity_load_data(time, data_source_folder):
"""Load and aggregate historical load data from the raw CSV files."""
load_data_files = [
data_file
for data_file in sorted(Path(data_source_folder).iterdir())
if data_file.name.startswith("Total Load - Day Ahead")
and data_file.name.endswith(".csv")
]
return time.join(
(
pl.concat(
[
pl.from_pandas(pd.read_csv(data_file, na_values=["N/A", "-"])).drop(
["Day-ahead Total Load Forecast [MW] - BZN|FR"]
)
for data_file in load_data_files
]
).select(
[
pl.col("Time (UTC)")
.str.split(by=" - ")
.list.first()
.str.to_datetime("%d.%m.%Y %H:%M", time_zone="UTC")
.alias("time"),
pl.col("Actual Total Load [MW] - BZN|FR").alias("load_mw"),
]
)
),
on="time",
)
Let’s load the data and check if there are missing values since we will use this data as the target variable for our forecasting model.
electricity_raw = load_electricity_load_data(time, data_source_folder)
electricity_raw.filter(pl.col("load_mw").is_null())
Show graph
time | load_mw |
---|---|
2021-05-12 08:00:00+00:00 | |
2021-05-19 04:00:00+00:00 | |
2021-06-03 16:00:00+00:00 | |
2021-10-31 00:00:00+00:00 | |
2021-10-31 01:00:00+00:00 | |
2023-03-26 00:00:00+00:00 | |
2023-04-17 12:00:00+00:00 | |
2023-04-17 13:00:00+00:00 | |
2024-12-31 23:00:00+00:00 | |
2025-03-30 02:00:00+00:00 |
time
Datetime- Null values
- 0 (0.0%)
- Unique values
- 36 (100.0%)
- Min | Max
- 2021-05-12T08:00:00+00:00 | 2025-03-30T02:00:00+00:00
load_mw
Float64- Null values
- 36 (100.0%)
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | time | Datetime | True | 0 (0.0%) | 36 (100.0%) | 2021-05-12T08:00:00+00:00 | 2025-03-30T02:00:00+00:00 | |||
1 | load_mw | Float64 | False | 36 (100.0%) |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
So apparently there are a few missing measurements. Let’s use linear interpolation to fill those missing values.
electricity_raw.filter(
(pl.col("time") > pl.datetime(2021, 10, 30, hour=10, time_zone="UTC"))
& (pl.col("time") < pl.datetime(2021, 10, 31, hour=10, time_zone="UTC"))
).skb.eval().plot.line(x="time:T", y="load_mw:Q")
electricity = electricity_raw.with_columns([pl.col("load_mw").interpolate()])
electricity.filter(
(pl.col("time") > pl.datetime(2021, 10, 30, hour=10, time_zone="UTC"))
& (pl.col("time") < pl.datetime(2021, 10, 31, hour=10, time_zone="UTC"))
).skb.eval().plot.line(x="time:T", y="load_mw:Q")
Lagged features#
We can now create some lagged features from the electricity load data.
We will create 3 hourly lagged features, 1 daily lagged feature, and 1 weekly lagged feature. We will also create a rolling median and inter-quartile feature over the last 24 hours and over the last 7 days. Inter-quartile features tell us what is the variability of the load over the given window.
def iqr(col, *, window_size: int):
"""Inter-quartile range (IQR) of a column."""
return col.rolling_quantile(0.75, window_size=window_size) - col.rolling_quantile(
0.25, window_size=window_size
)
electricity_lagged = electricity.with_columns(
[pl.col("load_mw").shift(i).alias(f"load_mw_lag_{i}h") for i in range(1, 4)]
+ [
pl.col("load_mw").shift(24).alias("load_mw_lag_1d"),
pl.col("load_mw").shift(24 * 7).alias("load_mw_lag_1w"),
pl.col("load_mw")
.rolling_median(window_size=24)
.alias("load_mw_rolling_median_24h"),
pl.col("load_mw")
.rolling_median(window_size=24 * 7)
.alias("load_mw_rolling_median_7d"),
iqr(pl.col("load_mw"), window_size=24).alias("load_mw_iqr_24h"),
iqr(pl.col("load_mw"), window_size=24 * 7).alias("load_mw_iqr_7d"),
],
)
electricity_lagged
Show graph
time | load_mw | load_mw_lag_1h | load_mw_lag_2h | load_mw_lag_3h | load_mw_lag_1d | load_mw_lag_1w | load_mw_rolling_median_24h | load_mw_rolling_median_7d | load_mw_iqr_24h | load_mw_iqr_7d |
---|---|---|---|---|---|---|---|---|---|---|
2021-03-23 00:00:00+00:00 | 5.98e+04 | |||||||||
2021-03-23 01:00:00+00:00 | 5.94e+04 | 5.98e+04 | ||||||||
2021-03-23 02:00:00+00:00 | 5.76e+04 | 5.94e+04 | 5.98e+04 | |||||||
2021-03-23 03:00:00+00:00 | 5.72e+04 | 5.76e+04 | 5.94e+04 | 5.98e+04 | ||||||
2021-03-23 04:00:00+00:00 | 6.04e+04 | 5.72e+04 | 5.76e+04 | 5.94e+04 | ||||||
2025-05-31 19:00:00+00:00 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.02e+04 | 4.16e+04 | 3.91e+04 | 3.94e+04 | 4.07e+04 | 4.23e+03 | 7.24e+03 |
2025-05-31 20:00:00+00:00 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.29e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 |
2025-05-31 21:00:00+00:00 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.38e+04 | 4.15e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 |
2025-05-31 22:00:00+00:00 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.20e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.14e+03 | 7.24e+03 |
2025-05-31 23:00:00+00:00 | 3.61e+04 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.82e+04 | 3.71e+04 | 3.94e+04 | 4.07e+04 | 4.82e+03 | 7.24e+03 |
time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
36,744 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
load_mw
Float64- Null values
- 0 (0.0%)
- Unique values
-
23,353 (63.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.81e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_lag_1h
Float64- Null values
- 1 (< 0.1%)
- Unique values
-
23,353 (63.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.81e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_lag_2h
Float64- Null values
- 2 (< 0.1%)
- Unique values
-
23,352 (63.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.81e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_lag_3h
Float64- Null values
- 3 (< 0.1%)
- Unique values
-
23,352 (63.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.81e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_lag_1d
Float64- Null values
- 24 (< 0.1%)
- Unique values
-
23,342 (63.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.81e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_lag_1w
Float64- Null values
- 168 (0.5%)
- Unique values
-
23,293 (63.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 4.99e+04 ± 1.05e+04
- Median ± IQR
- 4.82e+04 ± 1.41e+04
- Min | Max
- 2.87e+04 | 8.66e+04
load_mw_rolling_median_24h
Float64- Null values
- 23 (< 0.1%)
- Unique values
-
9,644 (26.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.06e+04 ± 9.28e+03
- Median ± IQR
- 4.75e+04 ± 1.29e+04
- Min | Max
- 3.37e+04 | 7.84e+04
load_mw_rolling_median_7d
Float64- Null values
- 167 (0.5%)
- Unique values
-
7,138 (19.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.01e+04 ± 8.82e+03
- Median ± IQR
- 4.60e+04 ± 1.35e+04
- Min | Max
- 3.85e+04 | 7.39e+04
load_mw_iqr_24h
Float64- Null values
- 23 (< 0.1%)
- Unique values
-
5,922 (16.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 6.52e+03 ± 1.56e+03
- Median ± IQR
- 6.43e+03 ± 2.05e+03
- Min | Max
- 2.32e+03 | 1.60e+04
load_mw_iqr_7d
Float64- Null values
- 167 (0.5%)
- Unique values
-
5,327 (14.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.30e+03 ± 1.41e+03
- Median ± IQR
- 8.27e+03 ± 1.63e+03
- Min | Max
- 5.04e+03 | 1.86e+04
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
1 | load_mw | Float64 | False | 0 (0.0%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 |
2 | load_mw_lag_1h | Float64 | False | 1 (< 0.1%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 |
3 | load_mw_lag_2h | Float64 | False | 2 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 |
4 | load_mw_lag_3h | Float64 | False | 3 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 |
5 | load_mw_lag_1d | Float64 | False | 24 (< 0.1%) | 23342 (63.5%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 |
6 | load_mw_lag_1w | Float64 | False | 168 (0.5%) | 23293 (63.4%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.82e+04 | 8.66e+04 |
7 | load_mw_rolling_median_24h | Float64 | False | 23 (< 0.1%) | 9644 (26.2%) | 5.06e+04 | 9.28e+03 | 3.37e+04 | 4.75e+04 | 7.84e+04 |
8 | load_mw_rolling_median_7d | Float64 | False | 167 (0.5%) | 7138 (19.4%) | 5.01e+04 | 8.82e+03 | 3.85e+04 | 4.60e+04 | 7.39e+04 |
9 | load_mw_iqr_24h | Float64 | False | 23 (< 0.1%) | 5922 (16.1%) | 6.52e+03 | 1.56e+03 | 2.32e+03 | 6.43e+03 | 1.60e+04 |
10 | load_mw_iqr_7d | Float64 | False | 167 (0.5%) | 5327 (14.5%) | 8.30e+03 | 1.41e+03 | 5.04e+03 | 8.27e+03 | 1.86e+04 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
altair.Chart(electricity_lagged.tail(100).skb.preview()).transform_fold(
[
"load_mw",
"load_mw_lag_1h",
"load_mw_lag_2h",
"load_mw_lag_3h",
"load_mw_lag_1d",
"load_mw_lag_1w",
"load_mw_rolling_median_24h",
"load_mw_rolling_median_7d",
"load_mw_rolling_iqr_24h",
"load_mw_rolling_iqr_7d",
],
as_=["key", "load_mw"],
).mark_line(tooltip=True).encode(x="time:T", y="load_mw:Q", color="key:N").interactive()
Final dataset#
We now assemble the dataset that will be used to train and evaluate the forecasting models via backtesting.
prediction_start_time = skrub.var(
"prediction_start_time", historical_data_start_time.skb.eval() + pl.duration(days=7)
)
prediction_end_time = skrub.var(
"prediction_end_time", historical_data_end_time.skb.eval() - pl.duration(hours=24)
)
@skrub.deferred
def define_prediction_time_range(prediction_start_time, prediction_end_time):
return pl.DataFrame().with_columns(
pl.datetime_range(
start=prediction_start_time,
end=prediction_end_time,
time_zone="UTC",
interval="1h",
).alias("prediction_time"),
)
prediction_time = define_prediction_time_range(
prediction_start_time, prediction_end_time
).skb.subsample(n=1000, how="head")
prediction_time
Show graph
prediction_time |
---|
2021-03-30 00:00:00+00:00 |
2021-03-30 01:00:00+00:00 |
2021-03-30 02:00:00+00:00 |
2021-03-30 03:00:00+00:00 |
2021-03-30 04:00:00+00:00 |
2021-05-10 11:00:00+00:00 |
2021-05-10 12:00:00+00:00 |
2021-05-10 13:00:00+00:00 |
2021-05-10 14:00:00+00:00 |
2021-05-10 15:00:00+00:00 |
prediction_time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
1,000 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | prediction_time | Datetime | True | 0 (0.0%) | 1000 (100.0%) | 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
@skrub.deferred
def build_features(
prediction_time,
electricity_lagged,
all_city_weather,
calendar,
future_feature_horizons=[1, 24],
):
return (
prediction_time.join(
electricity_lagged, left_on="prediction_time", right_on="time"
)
.join(
all_city_weather.select(
[pl.col("time")]
+ [
pl.col(c).shift(-h).alias(c + f"_future_{h}h")
for c in all_city_weather.columns
if c != "time"
for h in future_feature_horizons
]
),
left_on="prediction_time",
right_on="time",
)
.join(
calendar.select(
[pl.col("time")]
+ [
pl.col(c).shift(-h).alias(c + f"_future_{h}h")
for c in calendar.columns
if c != "time"
for h in future_feature_horizons
]
),
left_on="prediction_time",
right_on="time",
)
).drop("prediction_time")
features = build_features(
prediction_time=prediction_time,
electricity_lagged=electricity_lagged,
all_city_weather=all_city_weather,
calendar=calendar,
).skb.mark_as_X()
features
Show graph
load_mw | load_mw_lag_1h | load_mw_lag_2h | load_mw_lag_3h | load_mw_lag_1d | load_mw_lag_1w | load_mw_rolling_median_24h | load_mw_rolling_median_7d | load_mw_iqr_24h | load_mw_iqr_7d | weather_temperature_2m_paris_future_1h | weather_temperature_2m_paris_future_24h | weather_precipitation_paris_future_1h | weather_precipitation_paris_future_24h | weather_wind_speed_10m_paris_future_1h | weather_wind_speed_10m_paris_future_24h | weather_cloud_cover_paris_future_1h | weather_cloud_cover_paris_future_24h | weather_soil_moisture_1_to_3cm_paris_future_1h | weather_soil_moisture_1_to_3cm_paris_future_24h | weather_relative_humidity_2m_paris_future_1h | weather_relative_humidity_2m_paris_future_24h | weather_temperature_2m_lyon_future_1h | weather_temperature_2m_lyon_future_24h | weather_precipitation_lyon_future_1h | weather_precipitation_lyon_future_24h | weather_wind_speed_10m_lyon_future_1h | weather_wind_speed_10m_lyon_future_24h | weather_cloud_cover_lyon_future_1h | weather_cloud_cover_lyon_future_24h | weather_soil_moisture_1_to_3cm_lyon_future_1h | weather_soil_moisture_1_to_3cm_lyon_future_24h | weather_relative_humidity_2m_lyon_future_1h | weather_relative_humidity_2m_lyon_future_24h | weather_temperature_2m_marseille_future_1h | weather_temperature_2m_marseille_future_24h | weather_precipitation_marseille_future_1h | weather_precipitation_marseille_future_24h | weather_wind_speed_10m_marseille_future_1h | weather_wind_speed_10m_marseille_future_24h | weather_cloud_cover_marseille_future_1h | weather_cloud_cover_marseille_future_24h | weather_soil_moisture_1_to_3cm_marseille_future_1h | weather_soil_moisture_1_to_3cm_marseille_future_24h | weather_relative_humidity_2m_marseille_future_1h | weather_relative_humidity_2m_marseille_future_24h | weather_temperature_2m_toulouse_future_1h | weather_temperature_2m_toulouse_future_24h | weather_precipitation_toulouse_future_1h | weather_precipitation_toulouse_future_24h | weather_wind_speed_10m_toulouse_future_1h | weather_wind_speed_10m_toulouse_future_24h | weather_cloud_cover_toulouse_future_1h | weather_cloud_cover_toulouse_future_24h | weather_soil_moisture_1_to_3cm_toulouse_future_1h | weather_soil_moisture_1_to_3cm_toulouse_future_24h | weather_relative_humidity_2m_toulouse_future_1h | weather_relative_humidity_2m_toulouse_future_24h | weather_temperature_2m_lille_future_1h | weather_temperature_2m_lille_future_24h | weather_precipitation_lille_future_1h | weather_precipitation_lille_future_24h | weather_wind_speed_10m_lille_future_1h | weather_wind_speed_10m_lille_future_24h | weather_cloud_cover_lille_future_1h | weather_cloud_cover_lille_future_24h | weather_soil_moisture_1_to_3cm_lille_future_1h | weather_soil_moisture_1_to_3cm_lille_future_24h | weather_relative_humidity_2m_lille_future_1h | weather_relative_humidity_2m_lille_future_24h | weather_temperature_2m_limoges_future_1h | weather_temperature_2m_limoges_future_24h | weather_precipitation_limoges_future_1h | weather_precipitation_limoges_future_24h | weather_wind_speed_10m_limoges_future_1h | weather_wind_speed_10m_limoges_future_24h | weather_cloud_cover_limoges_future_1h | weather_cloud_cover_limoges_future_24h | weather_soil_moisture_1_to_3cm_limoges_future_1h | weather_soil_moisture_1_to_3cm_limoges_future_24h | weather_relative_humidity_2m_limoges_future_1h | weather_relative_humidity_2m_limoges_future_24h | weather_temperature_2m_nantes_future_1h | weather_temperature_2m_nantes_future_24h | weather_precipitation_nantes_future_1h | weather_precipitation_nantes_future_24h | weather_wind_speed_10m_nantes_future_1h | weather_wind_speed_10m_nantes_future_24h | weather_cloud_cover_nantes_future_1h | weather_cloud_cover_nantes_future_24h | weather_soil_moisture_1_to_3cm_nantes_future_1h | weather_soil_moisture_1_to_3cm_nantes_future_24h | weather_relative_humidity_2m_nantes_future_1h | weather_relative_humidity_2m_nantes_future_24h | weather_temperature_2m_strasbourg_future_1h | weather_temperature_2m_strasbourg_future_24h | weather_precipitation_strasbourg_future_1h | weather_precipitation_strasbourg_future_24h | weather_wind_speed_10m_strasbourg_future_1h | weather_wind_speed_10m_strasbourg_future_24h | weather_cloud_cover_strasbourg_future_1h | weather_cloud_cover_strasbourg_future_24h | weather_soil_moisture_1_to_3cm_strasbourg_future_1h | weather_soil_moisture_1_to_3cm_strasbourg_future_24h | weather_relative_humidity_2m_strasbourg_future_1h | weather_relative_humidity_2m_strasbourg_future_24h | weather_temperature_2m_brest_future_1h | weather_temperature_2m_brest_future_24h | weather_precipitation_brest_future_1h | weather_precipitation_brest_future_24h | weather_wind_speed_10m_brest_future_1h | weather_wind_speed_10m_brest_future_24h | weather_cloud_cover_brest_future_1h | weather_cloud_cover_brest_future_24h | weather_soil_moisture_1_to_3cm_brest_future_1h | weather_soil_moisture_1_to_3cm_brest_future_24h | weather_relative_humidity_2m_brest_future_1h | weather_relative_humidity_2m_brest_future_24h | weather_temperature_2m_bayonne_future_1h | weather_temperature_2m_bayonne_future_24h | weather_precipitation_bayonne_future_1h | weather_precipitation_bayonne_future_24h | weather_wind_speed_10m_bayonne_future_1h | weather_wind_speed_10m_bayonne_future_24h | weather_cloud_cover_bayonne_future_1h | weather_cloud_cover_bayonne_future_24h | weather_soil_moisture_1_to_3cm_bayonne_future_1h | weather_soil_moisture_1_to_3cm_bayonne_future_24h | weather_relative_humidity_2m_bayonne_future_1h | weather_relative_humidity_2m_bayonne_future_24h | cal_year_future_1h | cal_year_future_24h | cal_month_future_1h | cal_month_future_24h | cal_day_future_1h | cal_day_future_24h | cal_hour_future_1h | cal_hour_future_24h | cal_weekday_future_1h | cal_weekday_future_24h | cal_day_of_year_future_1h | cal_day_of_year_future_24h | cal_is_holiday_future_1h | cal_is_holiday_future_24h |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.64e+04 | 4.74e+04 | 4.92e+04 | 5.16e+04 | 4.86e+04 | 5.98e+04 | 5.11e+04 | 5.49e+04 | 7.83e+03 | 8.20e+03 | 13.1 | 16.1 | 0.00 | 0.00 | 5.80 | 3.96 | 100. | 0.00 | 64.0 | 66.0 | 10.6 | 13.1 | 0.00 | 0.00 | 4.55 | 5.76 | 63.0 | 0.00 | 65.0 | 55.0 | 14.3 | 15.1 | 0.00 | 0.00 | 1.53 | 5.19 | 0.00 | 0.00 | 72.0 | 59.0 | 11.6 | 12.5 | 0.00 | 0.00 | 19.4 | 16.8 | 0.00 | 6.00 | 67.0 | 54.0 | 10.4 | 13.1 | 0.00 | 0.00 | 7.57 | 8.21 | 48.0 | 0.00 | 67.0 | 77.0 | 7.40 | 8.90 | 0.00 | 0.00 | 4.32 | 4.45 | 0.00 | 0.00 | 85.0 | 85.0 | 9.53 | 11.6 | 0.00 | 0.00 | 11.0 | 9.45 | 0.00 | 0.00 | 86.0 | 81.0 | 10.3 | 12.5 | 0.00 | 0.00 | 1.14 | 5.41 | 17.0 | 19.0 | 62.0 | 76.0 | 10.3 | 9.73 | 0.00 | 0.00 | 13.5 | 10.3 | 11.0 | 7.00 | 83.0 | 76.0 | 12.3 | 13.9 | 0.00 | 0.00 | 9.69 | 8.21 | 10.0 | 0.00 | 64.0 | 58.0 | 2.02e+03 | 2.02e+03 | 3.00 | 3.00 | 30.0 | 31.0 | 1.00 | 0.00 | 2.00 | 3.00 | 89.0 | 90.0 | 0 | 0 | ||||||||||||||||||||
4.43e+04 | 4.64e+04 | 4.74e+04 | 4.92e+04 | 4.67e+04 | 5.94e+04 | 5.11e+04 | 5.49e+04 | 7.83e+03 | 8.25e+03 | 12.6 | 15.5 | 0.00 | 0.00 | 5.80 | 4.33 | 100. | 0.00 | 65.0 | 68.0 | 10.1 | 12.7 | 0.00 | 0.00 | 5.09 | 5.41 | 100. | 0.00 | 65.0 | 53.0 | 14.2 | 15.0 | 0.00 | 0.00 | 1.84 | 5.40 | 0.00 | 0.00 | 72.0 | 59.0 | 11.4 | 12.2 | 0.00 | 0.00 | 19.9 | 16.8 | 0.00 | 11.0 | 68.0 | 55.0 | 10.1 | 12.8 | 0.00 | 0.00 | 7.07 | 7.70 | 58.0 | 0.00 | 67.0 | 79.0 | 7.15 | 8.40 | 0.00 | 0.00 | 4.80 | 4.80 | 0.00 | 0.00 | 85.0 | 85.0 | 9.38 | 11.4 | 0.00 | 0.00 | 10.7 | 9.89 | 6.00 | 5.00 | 84.0 | 80.0 | 9.89 | 12.0 | 0.00 | 0.00 | 1.80 | 6.12 | 42.0 | 22.0 | 63.0 | 78.0 | 10.4 | 9.38 | 0.00 | 0.00 | 14.5 | 9.26 | 17.0 | 7.00 | 82.0 | 79.0 | 11.9 | 13.6 | 0.00 | 0.00 | 9.79 | 8.89 | 6.00 | 5.00 | 63.0 | 55.0 | 2.02e+03 | 2.02e+03 | 3.00 | 3.00 | 30.0 | 31.0 | 2.00 | 1.00 | 2.00 | 3.00 | 89.0 | 90.0 | 0 | 0 | ||||||||||||||||||||
4.39e+04 | 4.43e+04 | 4.64e+04 | 4.74e+04 | 4.63e+04 | 5.76e+04 | 5.11e+04 | 5.46e+04 | 7.83e+03 | 8.27e+03 | 12.2 | 15.0 | 0.00 | 0.00 | 6.12 | 4.55 | 100. | 0.00 | 66.0 | 71.0 | 9.69 | 12.2 | 0.00 | 0.00 | 5.41 | 5.09 | 100. | 0.00 | 65.0 | 54.0 | 14.0 | 14.9 | 0.00 | 0.00 | 2.52 | 5.62 | 0.00 | 0.00 | 73.0 | 59.0 | 11.2 | 12.0 | 0.00 | 0.00 | 20.1 | 17.3 | 0.00 | 7.00 | 70.0 | 57.0 | 9.80 | 12.4 | 0.00 | 0.00 | 7.07 | 7.59 | 98.0 | 0.00 | 68.0 | 80.0 | 6.60 | 7.90 | 0.00 | 0.00 | 4.80 | 4.21 | 0.00 | 0.00 | 85.0 | 85.0 | 9.13 | 10.9 | 0.00 | 0.00 | 11.0 | 10.9 | 0.00 | 0.00 | 84.0 | 82.0 | 9.49 | 11.5 | 0.00 | 0.00 | 3.60 | 6.12 | 18.0 | 20.0 | 63.0 | 81.0 | 10.6 | 9.13 | 0.00 | 0.00 | 15.0 | 8.65 | 100. | 16.0 | 78.0 | 82.0 | 11.7 | 12.8 | 0.00 | 0.100 | 9.51 | 9.20 | 10.0 | 0.00 | 61.0 | 66.0 | 2.02e+03 | 2.02e+03 | 3.00 | 3.00 | 30.0 | 31.0 | 3.00 | 2.00 | 2.00 | 3.00 | 89.0 | 90.0 | 0 | 0 | ||||||||||||||||||||
4.62e+04 | 4.39e+04 | 4.43e+04 | 4.64e+04 | 4.92e+04 | 5.72e+04 | 5.11e+04 | 5.43e+04 | 8.86e+03 | 8.28e+03 | 11.8 | 14.6 | 0.00 | 0.00 | 5.32 | 4.45 | 57.0 | 0.00 | 68.0 | 72.0 | 9.14 | 11.7 | 0.00 | 0.00 | 5.40 | 5.09 | 61.0 | 0.00 | 66.0 | 56.0 | 14.0 | 14.8 | 0.00 | 0.00 | 3.62 | 6.13 | 5.00 | 0.00 | 72.0 | 60.0 | 11.0 | 11.9 | 0.00 | 0.00 | 20.2 | 17.6 | 0.00 | 5.00 | 71.0 | 57.0 | 9.55 | 12.1 | 0.00 | 0.00 | 6.99 | 7.28 | 100. | 0.00 | 71.0 | 81.0 | 6.20 | 7.60 | 0.00 | 0.00 | 4.45 | 4.21 | 0.00 | 0.00 | 83.0 | 83.0 | 8.93 | 10.6 | 0.00 | 0.00 | 11.2 | 11.3 | 6.00 | 5.00 | 85.0 | 83.0 | 8.94 | 11.1 | 0.00 | 0.00 | 4.33 | 6.84 | 19.0 | 20.0 | 65.0 | 81.0 | 10.4 | 8.93 | 0.00 | 0.00 | 15.5 | 8.64 | 14.0 | 67.0 | 77.0 | 85.0 | 11.4 | 12.9 | 0.00 | 0.00 | 8.71 | 9.66 | 13.0 | 100. | 61.0 | 66.0 | 2.02e+03 | 2.02e+03 | 3.00 | 3.00 | 30.0 | 31.0 | 4.00 | 3.00 | 2.00 | 3.00 | 89.0 | 90.0 | 0 | 0 | ||||||||||||||||||||
5.19e+04 | 4.62e+04 | 4.39e+04 | 4.43e+04 | 5.49e+04 | 6.04e+04 | 5.11e+04 | 5.41e+04 | 8.86e+03 | 8.28e+03 | 11.3 | 14.1 | 0.00 | 0.00 | 5.48 | 4.38 | 8.00 | 6.00 | 71.0 | 74.0 | 8.64 | 11.3 | 0.00 | 0.00 | 5.45 | 5.05 | 12.0 | 0.00 | 68.0 | 57.0 | 13.9 | 14.7 | 0.00 | 0.00 | 5.35 | 4.33 | 0.00 | 0.00 | 71.0 | 61.0 | 10.9 | 11.7 | 0.00 | 0.00 | 19.9 | 17.6 | 0.00 | 10.0 | 72.0 | 56.0 | 9.15 | 11.8 | 0.00 | 0.00 | 7.57 | 7.59 | 72.0 | 0.00 | 76.0 | 81.0 | 6.10 | 7.40 | 0.00 | 0.00 | 4.21 | 4.55 | 0.00 | 0.00 | 80.0 | 78.0 | 8.63 | 10.2 | 0.00 | 0.00 | 11.0 | 10.2 | 0.00 | 6.00 | 87.0 | 86.0 | 8.54 | 10.7 | 0.00 | 0.00 | 3.98 | 7.24 | 73.0 | 18.0 | 66.0 | 81.0 | 10.5 | 8.63 | 0.00 | 0.00 | 16.7 | 9.42 | 19.0 | 59.0 | 76.0 | 89.0 | 11.6 | 12.7 | 0.00 | 0.00 | 8.21 | 8.89 | 76.0 | 51.0 | 60.0 | 64.0 | 2.02e+03 | 2.02e+03 | 3.00 | 3.00 | 30.0 | 31.0 | 5.00 | 4.00 | 2.00 | 3.00 | 89.0 | 90.0 | 0 | 0 | ||||||||||||||||||||
5.15e+04 | 5.26e+04 | 5.12e+04 | 5.03e+04 | 4.26e+04 | 5.41e+04 | 4.19e+04 | 4.89e+04 | 1.03e+04 | 9.72e+03 | 19.0 | 13.9 | 0.00 | 0.00 | 20.9 | 9.78 | 7.00 | 100. | 40.0 | 65.0 | 12.5 | 13.4 | 4.20 | 0.00 | 15.4 | 3.26 | 100. | 100. | 98.0 | 77.0 | 17.0 | 16.1 | 2.70 | 0.00 | 31.7 | 12.1 | 100. | 100. | 82.0 | 77.0 | 16.7 | 10.4 | 0.00 | 0.100 | 7.42 | 17.0 | 100. | 100. | 54.0 | 85.0 | 17.1 | 17.5 | 0.00 | 0.800 | 29.3 | 7.29 | 75.0 | 67.0 | 51.0 | 57.0 | 18.1 | 10.4 | 0.00 | 0.400 | 8.05 | 10.2 | 100. | 100. | 40.0 | 93.0 | 16.4 | 14.9 | 0.00 | 0.100 | 30.1 | 32.4 | 12.0 | 5.00 | 52.0 | 51.0 | 14.9 | 11.9 | 0.600 | 2.80 | 6.41 | 7.56 | 100. | 100. | 91.0 | 97.0 | 13.0 | 12.3 | 0.300 | 0.200 | 34.6 | 37.1 | 13.0 | 14.0 | 72.0 | 76.0 | 18.1 | 14.0 | 0.00 | 0.400 | 16.5 | 28.6 | 6.00 | 7.00 | 51.0 | 63.0 | 2.02e+03 | 2.02e+03 | 5.00 | 5.00 | 10.0 | 11.0 | 12.0 | 11.0 | 1.00 | 2.00 | 130. | 131. | 0 | 0 | ||||||||||||||||||||
5.02e+04 | 5.15e+04 | 5.26e+04 | 5.12e+04 | 4.02e+04 | 5.18e+04 | 4.25e+04 | 4.89e+04 | 1.15e+04 | 9.72e+03 | 19.6 | 15.6 | 0.00 | 0.300 | 20.6 | 13.4 | 36.0 | 100. | 38.0 | 61.0 | 10.7 | 14.2 | 7.60 | 0.100 | 12.9 | 13.7 | 100. | 100. | 98.0 | 75.0 | 16.9 | 17.6 | 0.900 | 0.400 | 35.7 | 26.2 | 100. | 7.00 | 83.0 | 67.0 | 18.6 | 12.7 | 0.00 | 0.400 | 9.47 | 19.8 | 100. | 100. | 44.0 | 76.0 | 17.2 | 17.0 | 0.00 | 1.00 | 25.8 | 7.99 | 69.0 | 100. | 51.0 | 58.0 | 18.2 | 10.7 | 0.00 | 0.500 | 9.37 | 11.9 | 100. | 100. | 40.0 | 90.0 | 16.5 | 14.8 | 0.00 | 0.100 | 30.1 | 35.7 | 24.0 | 24.0 | 51.0 | 55.0 | 14.3 | 11.8 | 1.30 | 2.60 | 5.94 | 5.51 | 100. | 100. | 92.0 | 97.0 | 13.0 | 11.7 | 0.400 | 0.400 | 33.8 | 38.0 | 12.0 | 84.0 | 71.0 | 84.0 | 18.1 | 14.9 | 0.00 | 0.100 | 13.3 | 25.8 | 12.0 | -1.00 | 49.0 | 57.0 | 2.02e+03 | 2.02e+03 | 5.00 | 5.00 | 10.0 | 11.0 | 13.0 | 12.0 | 1.00 | 2.00 | 130. | 131. | 0 | 0 | ||||||||||||||||||||
4.88e+04 | 5.02e+04 | 5.15e+04 | 5.26e+04 | 3.86e+04 | 4.91e+04 | 4.26e+04 | 4.88e+04 | 1.05e+04 | 9.72e+03 | 19.4 | 14.8 | 0.00 | 0.400 | 19.1 | 21.3 | 100. | 100. | 37.0 | 62.0 | 10.8 | 13.6 | 6.30 | 0.600 | 7.99 | 22.1 | 100. | 100. | 98.0 | 81.0 | 15.9 | 17.6 | 1.60 | 0.600 | 37.2 | 29.1 | 100. | 54.0 | 93.0 | 66.0 | 19.1 | 12.2 | 0.00 | 0.500 | 8.67 | 19.9 | 100. | 100. | 43.0 | 78.0 | 17.4 | 16.9 | 0.00 | 0.500 | 22.5 | 8.77 | 60.0 | 100. | 52.0 | 58.0 | 18.1 | 10.9 | 0.00 | 0.600 | 11.9 | 12.4 | 100. | 100. | 45.0 | 90.0 | 16.4 | 12.7 | 0.00 | 0.400 | 29.0 | 33.2 | 50.0 | 99.0 | 51.0 | 73.0 | 14.1 | 12.6 | 0.500 | 0.100 | 5.05 | 4.33 | 100. | 100. | 86.0 | 93.0 | 12.9 | 12.0 | 0.300 | 0.400 | 31.1 | 38.8 | 7.00 | 77.0 | 68.0 | 79.0 | 18.2 | 14.9 | 0.00 | 0.00 | 13.6 | 23.3 | 12.0 | 0.00 | 49.0 | 57.0 | 2.02e+03 | 2.02e+03 | 5.00 | 5.00 | 10.0 | 11.0 | 14.0 | 13.0 | 1.00 | 2.00 | 130. | 131. | 0 | 0 | ||||||||||||||||||||
4.73e+04 | 4.88e+04 | 5.02e+04 | 5.15e+04 | 3.76e+04 | 4.74e+04 | 4.28e+04 | 4.88e+04 | 1.02e+04 | 9.72e+03 | 19.3 | 13.9 | 0.00 | 0.00 | 17.1 | 11.2 | 96.0 | 100. | 38.0 | 60.0 | 10.8 | 11.0 | 4.50 | 1.40 | 11.2 | 14.8 | 100. | 100. | 98.0 | 92.0 | 15.8 | 18.0 | 1.20 | 0.00 | 36.6 | 31.6 | 100. | 13.0 | 95.0 | 61.0 | 19.1 | 13.4 | 0.00 | 0.500 | 7.34 | 24.7 | 100. | 96.0 | 46.0 | 73.0 | 16.5 | 16.9 | 0.100 | 0.500 | 19.4 | 11.3 | 100. | 100. | 57.0 | 58.0 | 17.0 | 11.6 | 0.00 | 0.600 | 10.2 | 14.1 | 100. | 100. | 49.0 | 83.0 | 16.1 | 13.8 | 0.00 | 0.300 | 28.2 | 34.2 | 19.0 | 29.0 | 52.0 | 68.0 | 13.3 | 13.5 | 0.400 | 0.00 | 4.33 | 7.13 | 100. | 100. | 90.0 | 90.0 | 13.0 | 12.3 | 0.100 | 0.300 | 28.7 | 37.5 | 11.0 | 19.0 | 64.0 | 73.0 | 17.9 | 14.9 | 0.00 | 0.00 | 13.4 | 19.5 | 15.0 | 0.00 | 49.0 | 57.0 | 2.02e+03 | 2.02e+03 | 5.00 | 5.00 | 10.0 | 11.0 | 15.0 | 14.0 | 1.00 | 2.00 | 130. | 131. | 0 | 0 | ||||||||||||||||||||
4.64e+04 | 4.73e+04 | 4.88e+04 | 5.02e+04 | 3.74e+04 | 4.68e+04 | 4.32e+04 | 4.88e+04 | 8.68e+03 | 9.72e+03 | 17.9 | 17.3 | 0.00 | 0.00 | 16.7 | 21.7 | 100. | 73.0 | 45.0 | 42.0 | 10.9 | 12.0 | 4.80 | 0.400 | 11.5 | 15.8 | 100. | 100. | 98.0 | 88.0 | 15.8 | 18.4 | 0.700 | 0.00 | 36.1 | 30.0 | 100. | 6.00 | 95.0 | 56.0 | 17.4 | 13.6 | 0.300 | 0.200 | 6.19 | 21.7 | 100. | 100. | 63.0 | 65.0 | 17.0 | 16.4 | 0.100 | 0.600 | 21.2 | 14.1 | 100. | 100. | 55.0 | 61.0 | 15.1 | 13.0 | 0.200 | 0.300 | 9.79 | 12.0 | 100. | 100. | 67.0 | 61.0 | 15.0 | 12.9 | 0.00 | 0.200 | 26.9 | 29.7 | 100. | 100. | 57.0 | 67.0 | 13.2 | 14.1 | 0.200 | 0.200 | 1.02 | 7.42 | 100. | 100. | 90.0 | 87.0 | 12.5 | 12.1 | 0.100 | 0.200 | 25.5 | 37.6 | 10.0 | 15.0 | 67.0 | 73.0 | 17.8 | 14.6 | 0.00 | 0.00 | 10.9 | 15.7 | 17.0 | 5.00 | 49.0 | 57.0 | 2.02e+03 | 2.02e+03 | 5.00 | 5.00 | 10.0 | 11.0 | 16.0 | 15.0 | 1.00 | 2.00 | 130. | 131. | 0 | 0 |
load_mw
Float64- Null values
- 0 (0.0%)
- Unique values
-
965 (96.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 6.37e+03
- Median ± IQR
- 5.06e+04 ± 8.51e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_lag_1h
Float64- Null values
- 0 (0.0%)
- Unique values
-
965 (96.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 6.37e+03
- Median ± IQR
- 5.06e+04 ± 8.48e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_lag_2h
Float64- Null values
- 0 (0.0%)
- Unique values
-
965 (96.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 6.37e+03
- Median ± IQR
- 5.06e+04 ± 8.48e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_lag_3h
Float64- Null values
- 0 (0.0%)
- Unique values
-
965 (96.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 6.37e+03
- Median ± IQR
- 5.06e+04 ± 8.48e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_lag_1d
Float64- Null values
- 0 (0.0%)
- Unique values
-
966 (96.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.10e+04 ± 6.29e+03
- Median ± IQR
- 5.08e+04 ± 8.27e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_lag_1w
Float64- Null values
- 0 (0.0%)
- Unique values
-
967 (96.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.20e+04 ± 6.28e+03
- Median ± IQR
- 5.16e+04 ± 8.39e+03
- Min | Max
- 3.71e+04 | 7.04e+04
load_mw_rolling_median_24h
Float64- Null values
- 0 (0.0%)
- Unique values
-
319 (31.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 4.96e+03
- Median ± IQR
- 5.04e+04 ± 5.76e+03
- Min | Max
- 3.97e+04 | 6.15e+04
load_mw_rolling_median_7d
Float64- Null values
- 0 (0.0%)
- Unique values
-
340 (34.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.13e+04 ± 2.96e+03
- Median ± IQR
- 4.98e+04 ± 5.04e+03
- Min | Max
- 4.73e+04 | 5.62e+04
load_mw_iqr_24h
Float64- Null values
- 0 (0.0%)
- Unique values
-
404 (40.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.95e+03 ± 1.46e+03
- Median ± IQR
- 5.60e+03 ± 1.70e+03
- Min | Max
- 3.17e+03 | 1.47e+04
load_mw_iqr_7d
Float64- Null values
- 0 (0.0%)
- Unique values
-
515 (51.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 7.31e+03 ± 1.82e+03
- Median ± IQR
- 6.79e+03 ± 1.92e+03
- Min | Max
- 5.08e+03 | 1.29e+04
weather_temperature_2m_paris_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
219 (21.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.8 ± 4.79
- Median ± IQR
- 10.4 ± 6.40
- Min | Max
- 1.16 | 26.6
weather_temperature_2m_paris_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
215 (21.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.7 ± 4.67
- Median ± IQR
- 10.4 ± 6.30
- Min | Max
- 1.16 | 26.6
weather_precipitation_paris_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 18 (1.8%)
- Mean ± Std
- 0.0510 ± 0.242
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 3.00
weather_precipitation_paris_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 18 (1.8%)
- Mean ± Std
- 0.0517 ± 0.242
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 3.00
weather_wind_speed_10m_paris_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
617 (61.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.2 ± 5.65
- Median ± IQR
- 11.4 ± 8.67
- Min | Max
- 1.08 | 29.9
weather_wind_speed_10m_paris_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
621 (62.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.3 ± 5.65
- Median ± IQR
- 11.5 ± 8.39
- Min | Max
- 1.08 | 29.9
weather_cloud_cover_paris_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
82 (8.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 52.8 ± 45.0
- Median ± IQR
- 62.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_paris_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
82 (8.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 54.5 ± 44.9
- Median ± IQR
- 72.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_paris_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_paris_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_paris_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
73 (7.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 56.4 ± 17.2
- Median ± IQR
- 56.0 ± 25.0
- Min | Max
- 24.0 | 96.0
weather_relative_humidity_2m_paris_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
73 (7.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 56.8 ± 17.2
- Median ± IQR
- 57.0 ± 26.0
- Min | Max
- 24.0 | 96.0
weather_temperature_2m_lyon_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
249 (24.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 11.3 ± 5.23
- Median ± IQR
- 10.8 ± 6.80
- Min | Max
- -0.465 | 24.6
weather_temperature_2m_lyon_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
245 (24.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 11.2 ± 5.14
- Median ± IQR
- 10.8 ± 6.60
- Min | Max
- -0.465 | 24.6
weather_precipitation_lyon_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 32 (3.2%)
- Mean ± Std
- 0.131 ± 0.584
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 7.60
weather_precipitation_lyon_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 35 (3.5%)
- Mean ± Std
- 0.155 ± 0.630
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 7.60
weather_wind_speed_10m_lyon_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
571 (57.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.6 ± 6.92
- Median ± IQR
- 8.50 ± 9.23
- Min | Max
- 0.00 | 39.2
weather_wind_speed_10m_lyon_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
574 (57.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.6 ± 6.95
- Median ± IQR
- 8.40 ± 9.35
- Min | Max
- 0.00 | 39.2
weather_cloud_cover_lyon_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
82 (8.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 54.0 ± 46.0
- Median ± IQR
- 71.0 ± 95.0
- Min | Max
- 0.00 | 101.
weather_cloud_cover_lyon_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
81 (8.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 55.9 ± 45.9
- Median ± IQR
- 83.0 ± 94.0
- Min | Max
- 0.00 | 101.
weather_soil_moisture_1_to_3cm_lyon_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_lyon_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_lyon_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
77 (7.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 63.5 ± 19.4
- Median ± IQR
- 62.0 ± 31.0
- Min | Max
- 22.0 | 98.0
weather_relative_humidity_2m_lyon_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
77 (7.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 64.4 ± 19.8
- Median ± IQR
- 63.0 ± 33.0
- Min | Max
- 22.0 | 98.0
weather_temperature_2m_marseille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
161 (16.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.0 ± 2.78
- Median ± IQR
- 14.5 ± 3.60
- Min | Max
- 4.78 | 21.3
weather_temperature_2m_marseille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
160 (16.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.0 ± 2.79
- Median ± IQR
- 14.6 ± 3.70
- Min | Max
- 4.78 | 21.3
weather_precipitation_marseille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 29 (2.9%)
- Mean ± Std
- 0.0983 ± 0.493
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 6.10
weather_precipitation_marseille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 29 (2.9%)
- Mean ± Std
- 0.114 ± 0.505
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 6.10
weather_wind_speed_10m_marseille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
734 (73.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 17.5 ± 14.2
- Median ± IQR
- 12.7 ± 13.8
- Min | Max
- 0.805 | 68.6
weather_wind_speed_10m_marseille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
742 (74.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 17.9 ± 14.2
- Median ± IQR
- 13.1 ± 14.7
- Min | Max
- 0.805 | 68.6
weather_cloud_cover_marseille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
85 (8.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 51.9 ± 45.7
- Median ± IQR
- 60.0 ± 95.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_marseille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
85 (8.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 53.3 ± 45.5
- Median ± IQR
- 66.0 ± 95.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_marseille_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_marseille_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_marseille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
69 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 62.6 ± 14.0
- Median ± IQR
- 61.0 ± 18.0
- Min | Max
- 27.0 | 95.0
weather_relative_humidity_2m_marseille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
69 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 63.1 ± 14.4
- Median ± IQR
- 61.0 ± 19.0
- Min | Max
- 27.0 | 95.0
weather_temperature_2m_toulouse_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
223 (22.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.4 ± 4.39
- Median ± IQR
- 12.1 ± 5.50
- Min | Max
- 1.48 | 27.2
weather_temperature_2m_toulouse_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
221 (22.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.3 ± 4.35
- Median ± IQR
- 12.1 ± 5.50
- Min | Max
- 1.48 | 27.2
weather_precipitation_toulouse_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 16 (1.6%)
- Mean ± Std
- 0.0487 ± 0.192
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 2.20
weather_precipitation_toulouse_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 18 (1.8%)
- Mean ± Std
- 0.0641 ± 0.228
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 2.20
weather_wind_speed_10m_toulouse_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
668 (66.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 13.1 ± 6.86
- Median ± IQR
- 12.3 ± 10.0
- Min | Max
- 0.360 | 39.5
weather_wind_speed_10m_toulouse_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
669 (66.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 13.0 ± 6.86
- Median ± IQR
- 12.1 ± 10.0
- Min | Max
- 0.360 | 39.5
weather_cloud_cover_toulouse_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
84 (8.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 59.9 ± 44.6
- Median ± IQR
- 92.0 ± 94.0
- Min | Max
- 0.00 | 101.
weather_cloud_cover_toulouse_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
85 (8.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 61.8 ± 44.1
- Median ± IQR
- 98.0 ± 93.0
- Min | Max
- 0.00 | 101.
weather_soil_moisture_1_to_3cm_toulouse_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_toulouse_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_toulouse_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
76 (7.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 62.4 ± 19.4
- Median ± IQR
- 60.0 ± 32.0
- Min | Max
- 22.0 | 98.0
weather_relative_humidity_2m_toulouse_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
76 (7.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 63.1 ± 19.7
- Median ± IQR
- 61.0 ± 34.0
- Min | Max
- 22.0 | 98.0
weather_temperature_2m_lille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
226 (22.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.43 ± 4.71
- Median ± IQR
- 7.65 ± 6.50
- Min | Max
- -0.850 | 24.5
weather_temperature_2m_lille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
220 (22.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.39 ± 4.63
- Median ± IQR
- 7.65 ± 6.50
- Min | Max
- -0.850 | 24.5
weather_precipitation_lille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 17 (1.7%)
- Mean ± Std
- 0.0482 ± 0.249
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 5.80
weather_precipitation_lille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 18 (1.8%)
- Mean ± Std
- 0.0522 ± 0.253
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 5.80
weather_wind_speed_10m_lille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
692 (69.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.1 ± 7.04
- Median ± IQR
- 13.6 ± 9.68
- Min | Max
- 0.720 | 43.5
weather_wind_speed_10m_lille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
693 (69.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 14.1 ± 7.08
- Median ± IQR
- 13.6 ± 9.75
- Min | Max
- 0.720 | 43.5
weather_cloud_cover_lille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 49.8 ± 43.6
- Median ± IQR
- 32.0 ± 93.0
- Min | Max
- 0.00 | 101.
weather_cloud_cover_lille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 50.9 ± 43.7
- Median ± IQR
- 36.0 ± 92.0
- Min | Max
- 0.00 | 101.
weather_soil_moisture_1_to_3cm_lille_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_lille_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_lille_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
69 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 64.2 ± 16.5
- Median ± IQR
- 65.0 ± 26.0
- Min | Max
- 29.0 | 97.0
weather_relative_humidity_2m_lille_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
69 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 64.5 ± 16.5
- Median ± IQR
- 65.0 ± 27.0
- Min | Max
- 29.0 | 97.0
weather_temperature_2m_limoges_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
279 (27.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.89 ± 5.99
- Median ± IQR
- 9.60 ± 7.50
- Min | Max
- -4.30 | 25.7
weather_temperature_2m_limoges_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
277 (27.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.79 ± 5.90
- Median ± IQR
- 9.50 ± 7.40
- Min | Max
- -4.30 | 25.7
weather_precipitation_limoges_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 25 (2.5%)
- Mean ± Std
- 0.0960 ± 0.480
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 6.70
weather_precipitation_limoges_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 25 (2.5%)
- Mean ± Std
- 0.103 ± 0.483
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 6.70
weather_wind_speed_10m_limoges_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
466 (46.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 7.90 ± 4.39
- Median ± IQR
- 6.62 ± 6.50
- Min | Max
- 0.00 | 21.6
weather_wind_speed_10m_limoges_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
474 (47.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 7.94 ± 4.40
- Median ± IQR
- 6.83 ± 6.42
- Min | Max
- 0.00 | 21.6
weather_cloud_cover_limoges_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
83 (8.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 54.4 ± 45.2
- Median ± IQR
- 69.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_limoges_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
83 (8.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 56.2 ± 45.0
- Median ± IQR
- 79.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_limoges_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_limoges_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_limoges_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
81 (8.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 68.6 ± 23.4
- Median ± IQR
- 71.0 ± 42.0
- Min | Max
- 20.0 | 100.
weather_relative_humidity_2m_limoges_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
81 (8.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 69.4 ± 23.5
- Median ± IQR
- 72.0 ± 42.0
- Min | Max
- 20.0 | 100.
weather_temperature_2m_nantes_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
245 (24.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.76 ± 5.31
- Median ± IQR
- 10.2 ± 7.40
- Min | Max
- -2.47 | 22.7
weather_temperature_2m_nantes_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
243 (24.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.67 ± 5.22
- Median ± IQR
- 10.1 ± 7.20
- Min | Max
- -2.47 | 22.7
weather_precipitation_nantes_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 14 (1.4%)
- Mean ± Std
- 0.0275 ± 0.139
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 2.20
weather_precipitation_nantes_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 15 (1.5%)
- Mean ± Std
- 0.0328 ± 0.157
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 2.20
weather_wind_speed_10m_nantes_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
713 (71.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 16.0 ± 7.37
- Median ± IQR
- 14.3 ± 10.0
- Min | Max
- 1.48 | 42.3
weather_wind_speed_10m_nantes_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
720 (72.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 16.1 ± 7.48
- Median ± IQR
- 14.5 ± 10.3
- Min | Max
- 1.48 | 42.3
weather_cloud_cover_nantes_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 49.7 ± 45.0
- Median ± IQR
- 32.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_nantes_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 51.2 ± 44.9
- Median ± IQR
- 47.0 ± 94.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_nantes_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_nantes_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_nantes_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
59 (5.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 72.8 ± 15.7
- Median ± IQR
- 74.0 ± 28.0
- Min | Max
- 39.0 | 98.0
weather_relative_humidity_2m_nantes_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
59 (5.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 72.9 ± 15.8
- Median ± IQR
- 74.0 ± 29.0
- Min | Max
- 39.0 | 98.0
weather_temperature_2m_strasbourg_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
236 (23.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.53 ± 4.83
- Median ± IQR
- 9.04 ± 6.20
- Min | Max
- -0.563 | 26.2
weather_temperature_2m_strasbourg_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
230 (23.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 9.46 ± 4.74
- Median ± IQR
- 9.04 ± 6.00
- Min | Max
- -0.563 | 26.2
weather_precipitation_strasbourg_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 21 (2.1%)
- Mean ± Std
- 0.0675 ± 0.246
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 2.80
weather_precipitation_strasbourg_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 25 (2.5%)
- Mean ± Std
- 0.0925 ± 0.349
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 4.30
weather_wind_speed_10m_strasbourg_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
556 (55.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.3 ± 5.50
- Median ± IQR
- 9.69 ± 7.95
- Min | Max
- 0.509 | 29.9
weather_wind_speed_10m_strasbourg_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
558 (55.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.3 ± 5.45
- Median ± IQR
- 9.69 ± 7.92
- Min | Max
- 0.509 | 29.9
weather_cloud_cover_strasbourg_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
85 (8.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 64.0 ± 42.9
- Median ± IQR
- 99.0 ± 89.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_strasbourg_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
84 (8.4%)
This column has a high cardinality (> 40).
- Mean ± Std
- 65.3 ± 42.8
- Median ± IQR
- 100. ± 89.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_strasbourg_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_strasbourg_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_strasbourg_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
70 (7.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 65.1 ± 17.3
- Median ± IQR
- 66.0 ± 26.0
- Min | Max
- 29.0 | 98.0
weather_relative_humidity_2m_strasbourg_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
71 (7.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 66.0 ± 17.8
- Median ± IQR
- 67.0 ± 28.0
- Min | Max
- 29.0 | 99.0
weather_temperature_2m_brest_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
203 (20.3%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.99 ± 4.30
- Median ± IQR
- 9.23 ± 6.10
- Min | Max
- 0.928 | 23.2
weather_temperature_2m_brest_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
199 (19.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 8.89 ± 4.21
- Median ± IQR
- 9.03 ± 6.00
- Min | Max
- 0.928 | 23.2
weather_precipitation_brest_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 12 (1.2%)
- Mean ± Std
- 0.0332 ± 0.118
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 1.40
weather_precipitation_brest_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 13 (1.3%)
- Mean ± Std
- 0.0387 ± 0.131
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 1.50
weather_wind_speed_10m_brest_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
779 (77.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 18.0 ± 8.97
- Median ± IQR
- 16.7 ± 12.7
- Min | Max
- 0.805 | 44.9
weather_wind_speed_10m_brest_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
786 (78.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 18.2 ± 9.11
- Median ± IQR
- 17.0 ± 13.0
- Min | Max
- 0.805 | 44.9
weather_cloud_cover_brest_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
91 (9.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 55.2 ± 43.4
- Median ± IQR
- 66.0 ± 93.0
- Min | Max
- 0.00 | 100.
weather_cloud_cover_brest_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
91 (9.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 55.5 ± 43.4
- Median ± IQR
- 68.0 ± 93.0
- Min | Max
- 0.00 | 100.
weather_soil_moisture_1_to_3cm_brest_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_brest_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_brest_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
57 (5.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 72.6 ± 13.6
- Median ± IQR
- 74.0 ± 23.0
- Min | Max
- 43.0 | 99.0
weather_relative_humidity_2m_brest_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
57 (5.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 72.9 ± 13.6
- Median ± IQR
- 75.0 ± 22.0
- Min | Max
- 43.0 | 99.0
weather_temperature_2m_bayonne_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
247 (24.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.2 ± 5.01
- Median ± IQR
- 12.1 ± 5.00
- Min | Max
- -0.202 | 29.4
weather_temperature_2m_bayonne_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
241 (24.1%)
This column has a high cardinality (> 40).
- Mean ± Std
- 12.1 ± 4.89
- Median ± IQR
- 12.0 ± 4.90
- Min | Max
- -0.202 | 29.4
weather_precipitation_bayonne_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 26 (2.6%)
- Mean ± Std
- 0.0919 ± 0.420
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 4.40
weather_precipitation_bayonne_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 29 (2.9%)
- Mean ± Std
- 0.109 ± 0.468
- Median ± IQR
- 0.00 ± 0.00
- Min | Max
- 0.00 | 5.40
weather_wind_speed_10m_bayonne_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
537 (53.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.1 ± 5.11
- Median ± IQR
- 9.00 ± 6.83
- Min | Max
- 0.509 | 33.3
weather_wind_speed_10m_bayonne_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
548 (54.8%)
This column has a high cardinality (> 40).
- Mean ± Std
- 10.4 ± 5.45
- Median ± IQR
- 9.11 ± 7.36
- Min | Max
- 0.509 | 33.3
weather_cloud_cover_bayonne_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 61.4 ± 44.2
- Median ± IQR
- 97.0 ± 93.0
- Min | Max
- -1.00 | 100.
weather_cloud_cover_bayonne_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
87 (8.7%)
This column has a high cardinality (> 40).
- Mean ± Std
- 62.4 ± 44.1
- Median ± IQR
- 100. ± 93.0
- Min | Max
- -1.00 | 100.
weather_soil_moisture_1_to_3cm_bayonne_future_1h
Float32- Null values
- 1,000 (100.0%)
weather_soil_moisture_1_to_3cm_bayonne_future_24h
Float32- Null values
- 1,000 (100.0%)
weather_relative_humidity_2m_bayonne_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
70 (7.0%)
This column has a high cardinality (> 40).
- Mean ± Std
- 70.5 ± 16.1
- Median ± IQR
- 72.0 ± 25.0
- Min | Max
- 25.0 | 98.0
weather_relative_humidity_2m_bayonne_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
69 (6.9%)
This column has a high cardinality (> 40).
- Mean ± Std
- 71.0 ± 15.9
- Median ± IQR
- 72.0 ± 25.0
- Min | Max
- 25.0 | 98.0
cal_year_future_1h
Float32- Null values
- 0 (0.0%)
2021.0
cal_year_future_24h
Float32- Null values
- 0 (0.0%)
2021.0
cal_month_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 3 (0.3%)
- Mean ± Std
- 4.19 ± 0.496
- Median ± IQR
- 4.00 ± 0.00
- Min | Max
- 3.00 | 5.00
cal_month_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 3 (0.3%)
- Mean ± Std
- 4.23 ± 0.476
- Median ± IQR
- 4.00 ± 1.00
- Min | Max
- 3.00 | 5.00
cal_day_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 31 (3.1%)
- Mean ± Std
- 13.8 ± 9.36
- Median ± IQR
- 12.0 ± 16.0
- Min | Max
- 1.00 | 31.0
cal_day_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 31 (3.1%)
- Mean ± Std
- 13.4 ± 9.04
- Median ± IQR
- 11.0 ± 15.0
- Min | Max
- 1.00 | 31.0
cal_hour_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 24 (2.4%)
- Mean ± Std
- 11.5 ± 6.91
- Median ± IQR
- 11.0 ± 12.0
- Min | Max
- 0.00 | 23.0
cal_hour_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 24 (2.4%)
- Mean ± Std
- 11.4 ± 6.91
- Median ± IQR
- 11.0 ± 12.0
- Min | Max
- 0.00 | 23.0
cal_weekday_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
- 7 (0.7%)
- Mean ± Std
- 4.02 ± 1.99
- Median ± IQR
- 4.00 ± 4.00
- Min | Max
- 1.00 | 7.00
cal_weekday_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
- 7 (0.7%)
- Mean ± Std
- 4.02 ± 2.00
- Median ± IQR
- 4.00 ± 4.00
- Min | Max
- 1.00 | 7.00
cal_day_of_year_future_1h
Float32- Null values
- 0 (0.0%)
- Unique values
-
42 (4.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 109. ± 12.0
- Median ± IQR
- 109. ± 21.0
- Min | Max
- 89.0 | 130.
cal_day_of_year_future_24h
Float32- Null values
- 0 (0.0%)
- Unique values
-
42 (4.2%)
This column has a high cardinality (> 40).
- Mean ± Std
- 110. ± 12.0
- Median ± IQR
- 110. ± 21.0
- Min | Max
- 90.0 | 131.
cal_is_holiday_future_1h
Boolean- Null values
- 0 (0.0%)
- Unique values
- 2 (0.2%)
cal_is_holiday_future_24h
Boolean- Null values
- 0 (0.0%)
- Unique values
- 2 (0.2%)
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | load_mw | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 |
1 | load_mw_lag_1h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 |
2 | load_mw_lag_2h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 |
3 | load_mw_lag_3h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 |
4 | load_mw_lag_1d | Float64 | False | 0 (0.0%) | 966 (96.6%) | 5.10e+04 | 6.29e+03 | 3.35e+04 | 5.08e+04 | 6.95e+04 |
5 | load_mw_lag_1w | Float64 | False | 0 (0.0%) | 967 (96.7%) | 5.20e+04 | 6.28e+03 | 3.71e+04 | 5.16e+04 | 7.04e+04 |
6 | load_mw_rolling_median_24h | Float64 | False | 0 (0.0%) | 319 (31.9%) | 5.08e+04 | 4.96e+03 | 3.97e+04 | 5.04e+04 | 6.15e+04 |
7 | load_mw_rolling_median_7d | Float64 | False | 0 (0.0%) | 340 (34.0%) | 5.13e+04 | 2.96e+03 | 4.73e+04 | 4.98e+04 | 5.62e+04 |
8 | load_mw_iqr_24h | Float64 | False | 0 (0.0%) | 404 (40.4%) | 5.95e+03 | 1.46e+03 | 3.17e+03 | 5.60e+03 | 1.47e+04 |
9 | load_mw_iqr_7d | Float64 | False | 0 (0.0%) | 515 (51.5%) | 7.31e+03 | 1.82e+03 | 5.08e+03 | 6.79e+03 | 1.29e+04 |
10 | weather_temperature_2m_paris_future_1h | Float32 | False | 0 (0.0%) | 219 (21.9%) | 10.8 | 4.79 | 1.16 | 10.4 | 26.6 |
11 | weather_temperature_2m_paris_future_24h | Float32 | False | 0 (0.0%) | 215 (21.5%) | 10.7 | 4.67 | 1.16 | 10.4 | 26.6 |
12 | weather_precipitation_paris_future_1h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0510 | 0.242 | 0.00 | 0.00 | 3.00 |
13 | weather_precipitation_paris_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0517 | 0.242 | 0.00 | 0.00 | 3.00 |
14 | weather_wind_speed_10m_paris_future_1h | Float32 | False | 0 (0.0%) | 617 (61.7%) | 12.2 | 5.65 | 1.08 | 11.4 | 29.9 |
15 | weather_wind_speed_10m_paris_future_24h | Float32 | False | 0 (0.0%) | 621 (62.1%) | 12.3 | 5.65 | 1.08 | 11.5 | 29.9 |
16 | weather_cloud_cover_paris_future_1h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 52.8 | 45.0 | 0.00 | 62.0 | 100. |
17 | weather_cloud_cover_paris_future_24h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 54.5 | 44.9 | 0.00 | 72.0 | 100. |
18 | weather_soil_moisture_1_to_3cm_paris_future_1h | Float32 | False | 1000 (100.0%) | ||||||
19 | weather_soil_moisture_1_to_3cm_paris_future_24h | Float32 | False | 1000 (100.0%) | ||||||
20 | weather_relative_humidity_2m_paris_future_1h | Float32 | False | 0 (0.0%) | 73 (7.3%) | 56.4 | 17.2 | 24.0 | 56.0 | 96.0 |
21 | weather_relative_humidity_2m_paris_future_24h | Float32 | False | 0 (0.0%) | 73 (7.3%) | 56.8 | 17.2 | 24.0 | 57.0 | 96.0 |
22 | weather_temperature_2m_lyon_future_1h | Float32 | False | 0 (0.0%) | 249 (24.9%) | 11.3 | 5.23 | -0.465 | 10.8 | 24.6 |
23 | weather_temperature_2m_lyon_future_24h | Float32 | False | 0 (0.0%) | 245 (24.5%) | 11.2 | 5.14 | -0.465 | 10.8 | 24.6 |
24 | weather_precipitation_lyon_future_1h | Float32 | False | 0 (0.0%) | 32 (3.2%) | 0.131 | 0.584 | 0.00 | 0.00 | 7.60 |
25 | weather_precipitation_lyon_future_24h | Float32 | False | 0 (0.0%) | 35 (3.5%) | 0.155 | 0.630 | 0.00 | 0.00 | 7.60 |
26 | weather_wind_speed_10m_lyon_future_1h | Float32 | False | 0 (0.0%) | 571 (57.1%) | 10.6 | 6.92 | 0.00 | 8.50 | 39.2 |
27 | weather_wind_speed_10m_lyon_future_24h | Float32 | False | 0 (0.0%) | 574 (57.4%) | 10.6 | 6.95 | 0.00 | 8.40 | 39.2 |
28 | weather_cloud_cover_lyon_future_1h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 54.0 | 46.0 | 0.00 | 71.0 | 101. |
29 | weather_cloud_cover_lyon_future_24h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 55.9 | 45.9 | 0.00 | 83.0 | 101. |
30 | weather_soil_moisture_1_to_3cm_lyon_future_1h | Float32 | False | 1000 (100.0%) | ||||||
31 | weather_soil_moisture_1_to_3cm_lyon_future_24h | Float32 | False | 1000 (100.0%) | ||||||
32 | weather_relative_humidity_2m_lyon_future_1h | Float32 | False | 0 (0.0%) | 77 (7.7%) | 63.5 | 19.4 | 22.0 | 62.0 | 98.0 |
33 | weather_relative_humidity_2m_lyon_future_24h | Float32 | False | 0 (0.0%) | 77 (7.7%) | 64.4 | 19.8 | 22.0 | 63.0 | 98.0 |
34 | weather_temperature_2m_marseille_future_1h | Float32 | False | 0 (0.0%) | 161 (16.1%) | 14.0 | 2.78 | 4.78 | 14.5 | 21.3 |
35 | weather_temperature_2m_marseille_future_24h | Float32 | False | 0 (0.0%) | 160 (16.0%) | 14.0 | 2.79 | 4.78 | 14.6 | 21.3 |
36 | weather_precipitation_marseille_future_1h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.0983 | 0.493 | 0.00 | 0.00 | 6.10 |
37 | weather_precipitation_marseille_future_24h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.114 | 0.505 | 0.00 | 0.00 | 6.10 |
38 | weather_wind_speed_10m_marseille_future_1h | Float32 | False | 0 (0.0%) | 734 (73.4%) | 17.5 | 14.2 | 0.805 | 12.7 | 68.6 |
39 | weather_wind_speed_10m_marseille_future_24h | Float32 | False | 0 (0.0%) | 742 (74.2%) | 17.9 | 14.2 | 0.805 | 13.1 | 68.6 |
40 | weather_cloud_cover_marseille_future_1h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 51.9 | 45.7 | 0.00 | 60.0 | 100. |
41 | weather_cloud_cover_marseille_future_24h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 53.3 | 45.5 | 0.00 | 66.0 | 100. |
42 | weather_soil_moisture_1_to_3cm_marseille_future_1h | Float32 | False | 1000 (100.0%) | ||||||
43 | weather_soil_moisture_1_to_3cm_marseille_future_24h | Float32 | False | 1000 (100.0%) | ||||||
44 | weather_relative_humidity_2m_marseille_future_1h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 62.6 | 14.0 | 27.0 | 61.0 | 95.0 |
45 | weather_relative_humidity_2m_marseille_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 63.1 | 14.4 | 27.0 | 61.0 | 95.0 |
46 | weather_temperature_2m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 223 (22.3%) | 12.4 | 4.39 | 1.48 | 12.1 | 27.2 |
47 | weather_temperature_2m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 221 (22.1%) | 12.3 | 4.35 | 1.48 | 12.1 | 27.2 |
48 | weather_precipitation_toulouse_future_1h | Float32 | False | 0 (0.0%) | 16 (1.6%) | 0.0487 | 0.192 | 0.00 | 0.00 | 2.20 |
49 | weather_precipitation_toulouse_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0641 | 0.228 | 0.00 | 0.00 | 2.20 |
50 | weather_wind_speed_10m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 668 (66.8%) | 13.1 | 6.86 | 0.360 | 12.3 | 39.5 |
51 | weather_wind_speed_10m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 669 (66.9%) | 13.0 | 6.86 | 0.360 | 12.1 | 39.5 |
52 | weather_cloud_cover_toulouse_future_1h | Float32 | False | 0 (0.0%) | 84 (8.4%) | 59.9 | 44.6 | 0.00 | 92.0 | 101. |
53 | weather_cloud_cover_toulouse_future_24h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 61.8 | 44.1 | 0.00 | 98.0 | 101. |
54 | weather_soil_moisture_1_to_3cm_toulouse_future_1h | Float32 | False | 1000 (100.0%) | ||||||
55 | weather_soil_moisture_1_to_3cm_toulouse_future_24h | Float32 | False | 1000 (100.0%) | ||||||
56 | weather_relative_humidity_2m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 76 (7.6%) | 62.4 | 19.4 | 22.0 | 60.0 | 98.0 |
57 | weather_relative_humidity_2m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 76 (7.6%) | 63.1 | 19.7 | 22.0 | 61.0 | 98.0 |
58 | weather_temperature_2m_lille_future_1h | Float32 | False | 0 (0.0%) | 226 (22.6%) | 8.43 | 4.71 | -0.850 | 7.65 | 24.5 |
59 | weather_temperature_2m_lille_future_24h | Float32 | False | 0 (0.0%) | 220 (22.0%) | 8.39 | 4.63 | -0.850 | 7.65 | 24.5 |
60 | weather_precipitation_lille_future_1h | Float32 | False | 0 (0.0%) | 17 (1.7%) | 0.0482 | 0.249 | 0.00 | 0.00 | 5.80 |
61 | weather_precipitation_lille_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0522 | 0.253 | 0.00 | 0.00 | 5.80 |
62 | weather_wind_speed_10m_lille_future_1h | Float32 | False | 0 (0.0%) | 692 (69.2%) | 14.1 | 7.04 | 0.720 | 13.6 | 43.5 |
63 | weather_wind_speed_10m_lille_future_24h | Float32 | False | 0 (0.0%) | 693 (69.3%) | 14.1 | 7.08 | 0.720 | 13.6 | 43.5 |
64 | weather_cloud_cover_lille_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 49.8 | 43.6 | 0.00 | 32.0 | 101. |
65 | weather_cloud_cover_lille_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 50.9 | 43.7 | 0.00 | 36.0 | 101. |
66 | weather_soil_moisture_1_to_3cm_lille_future_1h | Float32 | False | 1000 (100.0%) | ||||||
67 | weather_soil_moisture_1_to_3cm_lille_future_24h | Float32 | False | 1000 (100.0%) | ||||||
68 | weather_relative_humidity_2m_lille_future_1h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 64.2 | 16.5 | 29.0 | 65.0 | 97.0 |
69 | weather_relative_humidity_2m_lille_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 64.5 | 16.5 | 29.0 | 65.0 | 97.0 |
70 | weather_temperature_2m_limoges_future_1h | Float32 | False | 0 (0.0%) | 279 (27.9%) | 9.89 | 5.99 | -4.30 | 9.60 | 25.7 |
71 | weather_temperature_2m_limoges_future_24h | Float32 | False | 0 (0.0%) | 277 (27.7%) | 9.79 | 5.90 | -4.30 | 9.50 | 25.7 |
72 | weather_precipitation_limoges_future_1h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.0960 | 0.480 | 0.00 | 0.00 | 6.70 |
73 | weather_precipitation_limoges_future_24h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.103 | 0.483 | 0.00 | 0.00 | 6.70 |
74 | weather_wind_speed_10m_limoges_future_1h | Float32 | False | 0 (0.0%) | 466 (46.6%) | 7.90 | 4.39 | 0.00 | 6.62 | 21.6 |
75 | weather_wind_speed_10m_limoges_future_24h | Float32 | False | 0 (0.0%) | 474 (47.4%) | 7.94 | 4.40 | 0.00 | 6.83 | 21.6 |
76 | weather_cloud_cover_limoges_future_1h | Float32 | False | 0 (0.0%) | 83 (8.3%) | 54.4 | 45.2 | 0.00 | 69.0 | 100. |
77 | weather_cloud_cover_limoges_future_24h | Float32 | False | 0 (0.0%) | 83 (8.3%) | 56.2 | 45.0 | 0.00 | 79.0 | 100. |
78 | weather_soil_moisture_1_to_3cm_limoges_future_1h | Float32 | False | 1000 (100.0%) | ||||||
79 | weather_soil_moisture_1_to_3cm_limoges_future_24h | Float32 | False | 1000 (100.0%) | ||||||
80 | weather_relative_humidity_2m_limoges_future_1h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 68.6 | 23.4 | 20.0 | 71.0 | 100. |
81 | weather_relative_humidity_2m_limoges_future_24h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 69.4 | 23.5 | 20.0 | 72.0 | 100. |
82 | weather_temperature_2m_nantes_future_1h | Float32 | False | 0 (0.0%) | 245 (24.5%) | 9.76 | 5.31 | -2.47 | 10.2 | 22.7 |
83 | weather_temperature_2m_nantes_future_24h | Float32 | False | 0 (0.0%) | 243 (24.3%) | 9.67 | 5.22 | -2.47 | 10.1 | 22.7 |
84 | weather_precipitation_nantes_future_1h | Float32 | False | 0 (0.0%) | 14 (1.4%) | 0.0275 | 0.139 | 0.00 | 0.00 | 2.20 |
85 | weather_precipitation_nantes_future_24h | Float32 | False | 0 (0.0%) | 15 (1.5%) | 0.0328 | 0.157 | 0.00 | 0.00 | 2.20 |
86 | weather_wind_speed_10m_nantes_future_1h | Float32 | False | 0 (0.0%) | 713 (71.3%) | 16.0 | 7.37 | 1.48 | 14.3 | 42.3 |
87 | weather_wind_speed_10m_nantes_future_24h | Float32 | False | 0 (0.0%) | 720 (72.0%) | 16.1 | 7.48 | 1.48 | 14.5 | 42.3 |
88 | weather_cloud_cover_nantes_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 49.7 | 45.0 | 0.00 | 32.0 | 100. |
89 | weather_cloud_cover_nantes_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 51.2 | 44.9 | 0.00 | 47.0 | 100. |
90 | weather_soil_moisture_1_to_3cm_nantes_future_1h | Float32 | False | 1000 (100.0%) | ||||||
91 | weather_soil_moisture_1_to_3cm_nantes_future_24h | Float32 | False | 1000 (100.0%) | ||||||
92 | weather_relative_humidity_2m_nantes_future_1h | Float32 | False | 0 (0.0%) | 59 (5.9%) | 72.8 | 15.7 | 39.0 | 74.0 | 98.0 |
93 | weather_relative_humidity_2m_nantes_future_24h | Float32 | False | 0 (0.0%) | 59 (5.9%) | 72.9 | 15.8 | 39.0 | 74.0 | 98.0 |
94 | weather_temperature_2m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 236 (23.6%) | 9.53 | 4.83 | -0.563 | 9.04 | 26.2 |
95 | weather_temperature_2m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 230 (23.0%) | 9.46 | 4.74 | -0.563 | 9.04 | 26.2 |
96 | weather_precipitation_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 21 (2.1%) | 0.0675 | 0.246 | 0.00 | 0.00 | 2.80 |
97 | weather_precipitation_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.0925 | 0.349 | 0.00 | 0.00 | 4.30 |
98 | weather_wind_speed_10m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 556 (55.6%) | 10.3 | 5.50 | 0.509 | 9.69 | 29.9 |
99 | weather_wind_speed_10m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 558 (55.8%) | 10.3 | 5.45 | 0.509 | 9.69 | 29.9 |
100 | weather_cloud_cover_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 64.0 | 42.9 | 0.00 | 99.0 | 100. |
101 | weather_cloud_cover_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 84 (8.4%) | 65.3 | 42.8 | 0.00 | 100. | 100. |
102 | weather_soil_moisture_1_to_3cm_strasbourg_future_1h | Float32 | False | 1000 (100.0%) | ||||||
103 | weather_soil_moisture_1_to_3cm_strasbourg_future_24h | Float32 | False | 1000 (100.0%) | ||||||
104 | weather_relative_humidity_2m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 70 (7.0%) | 65.1 | 17.3 | 29.0 | 66.0 | 98.0 |
105 | weather_relative_humidity_2m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 71 (7.1%) | 66.0 | 17.8 | 29.0 | 67.0 | 99.0 |
106 | weather_temperature_2m_brest_future_1h | Float32 | False | 0 (0.0%) | 203 (20.3%) | 8.99 | 4.30 | 0.928 | 9.23 | 23.2 |
107 | weather_temperature_2m_brest_future_24h | Float32 | False | 0 (0.0%) | 199 (19.9%) | 8.89 | 4.21 | 0.928 | 9.03 | 23.2 |
108 | weather_precipitation_brest_future_1h | Float32 | False | 0 (0.0%) | 12 (1.2%) | 0.0332 | 0.118 | 0.00 | 0.00 | 1.40 |
109 | weather_precipitation_brest_future_24h | Float32 | False | 0 (0.0%) | 13 (1.3%) | 0.0387 | 0.131 | 0.00 | 0.00 | 1.50 |
110 | weather_wind_speed_10m_brest_future_1h | Float32 | False | 0 (0.0%) | 779 (77.9%) | 18.0 | 8.97 | 0.805 | 16.7 | 44.9 |
111 | weather_wind_speed_10m_brest_future_24h | Float32 | False | 0 (0.0%) | 786 (78.6%) | 18.2 | 9.11 | 0.805 | 17.0 | 44.9 |
112 | weather_cloud_cover_brest_future_1h | Float32 | False | 0 (0.0%) | 91 (9.1%) | 55.2 | 43.4 | 0.00 | 66.0 | 100. |
113 | weather_cloud_cover_brest_future_24h | Float32 | False | 0 (0.0%) | 91 (9.1%) | 55.5 | 43.4 | 0.00 | 68.0 | 100. |
114 | weather_soil_moisture_1_to_3cm_brest_future_1h | Float32 | False | 1000 (100.0%) | ||||||
115 | weather_soil_moisture_1_to_3cm_brest_future_24h | Float32 | False | 1000 (100.0%) | ||||||
116 | weather_relative_humidity_2m_brest_future_1h | Float32 | False | 0 (0.0%) | 57 (5.7%) | 72.6 | 13.6 | 43.0 | 74.0 | 99.0 |
117 | weather_relative_humidity_2m_brest_future_24h | Float32 | False | 0 (0.0%) | 57 (5.7%) | 72.9 | 13.6 | 43.0 | 75.0 | 99.0 |
118 | weather_temperature_2m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 247 (24.7%) | 12.2 | 5.01 | -0.202 | 12.1 | 29.4 |
119 | weather_temperature_2m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 241 (24.1%) | 12.1 | 4.89 | -0.202 | 12.0 | 29.4 |
120 | weather_precipitation_bayonne_future_1h | Float32 | False | 0 (0.0%) | 26 (2.6%) | 0.0919 | 0.420 | 0.00 | 0.00 | 4.40 |
121 | weather_precipitation_bayonne_future_24h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.109 | 0.468 | 0.00 | 0.00 | 5.40 |
122 | weather_wind_speed_10m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 537 (53.7%) | 10.1 | 5.11 | 0.509 | 9.00 | 33.3 |
123 | weather_wind_speed_10m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 548 (54.8%) | 10.4 | 5.45 | 0.509 | 9.11 | 33.3 |
124 | weather_cloud_cover_bayonne_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 61.4 | 44.2 | -1.00 | 97.0 | 100. |
125 | weather_cloud_cover_bayonne_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 62.4 | 44.1 | -1.00 | 100. | 100. |
126 | weather_soil_moisture_1_to_3cm_bayonne_future_1h | Float32 | False | 1000 (100.0%) | ||||||
127 | weather_soil_moisture_1_to_3cm_bayonne_future_24h | Float32 | False | 1000 (100.0%) | ||||||
128 | weather_relative_humidity_2m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 70 (7.0%) | 70.5 | 16.1 | 25.0 | 72.0 | 98.0 |
129 | weather_relative_humidity_2m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 71.0 | 15.9 | 25.0 | 72.0 | 98.0 |
130 | cal_year_future_1h | Float32 | True | 0 (0.0%) | 1 (0.1%) | 2.02e+03 | 0.00 | |||
131 | cal_year_future_24h | Float32 | True | 0 (0.0%) | 1 (0.1%) | 2.02e+03 | 0.00 | |||
132 | cal_month_future_1h | Float32 | True | 0 (0.0%) | 3 (0.3%) | 4.19 | 0.496 | 3.00 | 4.00 | 5.00 |
133 | cal_month_future_24h | Float32 | True | 0 (0.0%) | 3 (0.3%) | 4.23 | 0.476 | 3.00 | 4.00 | 5.00 |
134 | cal_day_future_1h | Float32 | False | 0 (0.0%) | 31 (3.1%) | 13.8 | 9.36 | 1.00 | 12.0 | 31.0 |
135 | cal_day_future_24h | Float32 | False | 0 (0.0%) | 31 (3.1%) | 13.4 | 9.04 | 1.00 | 11.0 | 31.0 |
136 | cal_hour_future_1h | Float32 | False | 0 (0.0%) | 24 (2.4%) | 11.5 | 6.91 | 0.00 | 11.0 | 23.0 |
137 | cal_hour_future_24h | Float32 | False | 0 (0.0%) | 24 (2.4%) | 11.4 | 6.91 | 0.00 | 11.0 | 23.0 |
138 | cal_weekday_future_1h | Float32 | False | 0 (0.0%) | 7 (0.7%) | 4.02 | 1.99 | 1.00 | 4.00 | 7.00 |
139 | cal_weekday_future_24h | Float32 | False | 0 (0.0%) | 7 (0.7%) | 4.02 | 2.00 | 1.00 | 4.00 | 7.00 |
140 | cal_day_of_year_future_1h | Float32 | True | 0 (0.0%) | 42 (4.2%) | 109. | 12.0 | 89.0 | 109. | 130. |
141 | cal_day_of_year_future_24h | Float32 | True | 0 (0.0%) | 42 (4.2%) | 110. | 12.0 | 90.0 | 110. | 131. |
142 | cal_is_holiday_future_1h | Boolean | False | 0 (0.0%) | 2 (0.2%) | |||||
143 | cal_is_holiday_future_24h | Boolean | False | 0 (0.0%) | 2 (0.2%) |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Let’s build training and evaluation targets for all possible horizons from 1 to 24 hours.
@skrub.deferred
def build_targets(prediction_time, electricity):
return prediction_time.join(
electricity.with_columns(
pl.col("load_mw").shift(-24).alias("load_mw_horizon_24h")
),
left_on="prediction_time",
right_on="time",
)
targets = build_targets(prediction_time, electricity)
targets
Show graph
prediction_time | load_mw | load_mw_horizon_24h |
---|---|---|
2021-03-30 00:00:00+00:00 | 4.64e+04 | 4.45e+04 |
2021-03-30 01:00:00+00:00 | 4.43e+04 | 4.24e+04 |
2021-03-30 02:00:00+00:00 | 4.39e+04 | 4.16e+04 |
2021-03-30 03:00:00+00:00 | 4.62e+04 | 4.36e+04 |
2021-03-30 04:00:00+00:00 | 5.19e+04 | 4.86e+04 |
2021-05-10 11:00:00+00:00 | 5.15e+04 | 5.25e+04 |
2021-05-10 12:00:00+00:00 | 5.02e+04 | 5.08e+04 |
2021-05-10 13:00:00+00:00 | 4.88e+04 | 4.90e+04 |
2021-05-10 14:00:00+00:00 | 4.73e+04 | 4.77e+04 |
2021-05-10 15:00:00+00:00 | 4.64e+04 | 4.69e+04 |
prediction_time
Datetime- Null values
- 0 (0.0%)
- Unique values
-
1,000 (100.0%)
This column has a high cardinality (> 40).
- Min | Max
- 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00
load_mw
Float64- Null values
- 0 (0.0%)
- Unique values
-
965 (96.5%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.08e+04 ± 6.37e+03
- Median ± IQR
- 5.06e+04 ± 8.51e+03
- Min | Max
- 3.35e+04 | 6.95e+04
load_mw_horizon_24h
Float64- Null values
- 0 (0.0%)
- Unique values
-
966 (96.6%)
This column has a high cardinality (> 40).
- Mean ± Std
- 5.07e+04 ± 6.38e+03
- Median ± IQR
- 5.05e+04 ± 8.44e+03
- Min | Max
- 3.35e+04 | 6.95e+04
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column
|
Column name
|
dtype
|
Is sorted
|
Null values
|
Unique values
|
Mean
|
Std
|
Min
|
Median
|
Max
|
---|---|---|---|---|---|---|---|---|---|---|
0 | prediction_time | Datetime | True | 0 (0.0%) | 1000 (100.0%) | 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00 | |||
1 | load_mw | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 |
2 | load_mw_horizon_24h | Float64 | False | 0 (0.0%) | 966 (96.6%) | 5.07e+04 | 6.38e+03 | 3.35e+04 | 5.05e+04 | 6.95e+04 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Let’s serialize this data loading and feature engineering pipeline for reuse in later notebooks.
import cloudpickle
with open("feature_engineering_pipeline.pkl", "wb") as f:
cloudpickle.dump(
{
"features": features,
"targets": targets,
"prediction_time": prediction_time,
},
f,
)