Tuning pipelines#

Our machine-learning pipeline typically contains some values or choices which may influence its prediction performance, such as hyperparameters (e.g. the regularization parameter alpha of a RidgeClassifier, the learning_rate of a HistGradientBoostingClassifier), which estimator to use (e.g. RidgeClassifier or HistGradientBoostingClassifier), or which steps to include (e.g. should we join a table to bring additional information or not).

We want to tune those choices by trying several options and keeping those that give the best performance on a validation set.

Skrub expressions provide a convenient way to specify the range of possible values, by inserting it directly in place of the actual value. For example we can write:

RidgeClassifier(alpha=skrub.choose_from([0.1, 1.0, 10.0], name='α'))

instead of:

RidgeClassifier(alpha=1.0).

Skrub then inspects our pipeline to discover all the places where we used objects like skrub.choose_from() and builds a grid of hyperparameters for us.

We will illustrate hyperparameter tuning on the “toxicity” dataset. This

dataset contains 1,000 texts and the task is to predict if they are flagged as being toxic or not.

We start from a very simple pipeline without any hyperparameters.

from sklearn.ensemble import HistGradientBoostingClassifier

import skrub
import skrub.datasets

data = skrub.datasets.fetch_toxicity().toxicity

# This dataset is sorted -- all toxic tweets appear first, so we shuffle it
data = data.sample(frac=1.0, random_state=1)

texts = data[["text"]]
labels = data["is_toxic"]

We mark the texts column as the input and the labels column as the target. See the previous example for a more detailed explanation of skrub.X and skrub.y. We then encode the text with a MinHashEncoder and fit a HistGradientBoostingClassifier on the resulting features.

<Var 'X'>
Show graph X: VAR 'X'

Result:

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



<Var 'y'>
Show graph y: VAR 'y'

Result:

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



pred = X.skb.apply(skrub.MinHashEncoder()).skb.apply(
    HistGradientBoostingClassifier(), y=y
)

pred.skb.cross_validate(n_jobs=4)["test_score"]
0    0.635
1    0.590
2    0.645
3    0.595
4    0.585
Name: test_score, dtype: float64

For the sake of the example, we will focus on the number of MinHashEncoder components and the learning_rate of the HistGradientBoostingClassifier to illustrate the skrub.choose_from(...) objects. When we use a scikit-learn hyperparameter-tuner like GridSearchCV or RandomizedSearchCV, we need to specify a grid of hyperparameters separately from the estimator, with something similar to GridSearchCV(my_pipeline, param_grid={"encoder__n_components: [5, 10, 20]"}). Instead, with skrub we can use skrub.choose_from(...) directly where the actual value would normally go. Skrub then takes care of constructing the GridSearchCV’s parameter grid for us.

Several utilities are available:

  • choose_from to choose from a discrete set of values

  • choose_float and choose_int to sample numbers in a given range

  • choose_bool to choose between True and False

  • optional to choose between something and None; typically to make a transformation step optional such as X.skb.apply(skrub.optional(StandardScaler()))

Choices can be given a name which is used to display hyperparameter search results and plots or to override their outcome. The name is optional.

Note that skrub.choose_float() and skrub.choose_int() can be given a log argument to sample in log scale.

X, y = skrub.X(texts), skrub.y(labels)

encoder = skrub.MinHashEncoder(
    n_components=skrub.choose_int(5, 15, name="N components")
)
classifier = HistGradientBoostingClassifier(
    learning_rate=skrub.choose_float(0.01, 0.9, log=True, name="lr")
)
pred = X.skb.apply(encoder).skb.apply(classifier, y=y)

We can then obtain an estimator that performs the hyperparameter search with .skb.get_grid_search() or .skb.get_randomized_search(). They accept the same arguments as their scikit-learn counterparts (e.g. scoring and n_jobs). Also, like .skb.get_pipeline(), they accept a fitted argument and if it is True the search is fitted on the data we provided when initializing our pipeline’s variables.

search = pred.skb.get_randomized_search(n_iter=8, n_jobs=4, random_state=1, fitted=True)
search.results_
mean_test_score N components lr
0 0.573 11 0.218316
1 0.568 11 0.255675
2 0.566 10 0.112974
3 0.551 5 0.204294
4 0.545 5 0.038979
5 0.545 7 0.015151
6 0.541 7 0.047349
7 0.535 8 0.520061


If the plotly library is installed, we can visualize the results of the hyperparameter search with .plot_results(). In the plot below, each line represents a combination of hyperparameters (in this case, only N components and learning rate), and each column of points represents either a hyperparameter, or the score of a given combination of hyperparameters. The color of the line represents the score of the combination of hyperparameters. The plot is interactive, and it is possible to select only a subset of the hyperparameters to visualize by dragging the mouse over each column to select the desired range. This is particularly useful when there are many combinations of hyperparameters, and we are interested in understanding which hyperparameters have the largest impact on the score.



Choices can appear in many places#

Choices are not limited to selecting estimator hyperparameters. They can also be used to choose between different estimators, or in place of any value used in our pipeline.

For example, here we pass a choice to pandas DataFrame’s assign method. We want to add a feature that captures the length of the text, but we are not sure if it is better to count length in characters or in words. We do not want to add both because it would be redundant. We can add a column to the dataframe, which will be chosen among the length in characters or the length in words:

X, y = skrub.X(texts), skrub.y(labels)

X.assign(
    length=skrub.choose_from(
        {"words": X["text"].str.count(r"\b\w+\b"), "chars": X["text"].str.len()},
        name="length",
    )
)
<CallMethod 'assign'>
Show graph X: VAR 'X' GETITEM 'text' GETITEM 'text' CALLMETHOD 'assign' GETATTR 'str' CALLMETHOD 'count' GETATTR 'str' CALLMETHOD 'len'

Result:

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



choose_from can be given a dictionary if we want to provide names for the individual outcomes, or a list, when names are not needed: choose_from([1, 100], name='N'), choose_from({'small': 1, 'big': 100}, name='N').

Choices can be nested arbitrarily. For example, here we want to choose between 2 possible encoder types: the MinHashEncoder or the StringEncoder. Each of the possible outcomes contains a choice itself: the number of components.

n_components = skrub.choose_int(5, 15, name="N components")

encoder = skrub.choose_from(
    {
        "minhash": skrub.MinHashEncoder(n_components=n_components),
        "lse": skrub.StringEncoder(n_components=n_components),
    },
    name="encoder",
)
X.skb.apply(encoder, cols="text")
<Apply MinHashEncoder>
Show graph X: VAR 'X' APPLY MinHashEncoder

Result:

Please enable javascript

The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").



In a similar vein, we might want to choose between a HGB classifier and a Ridge classifier, each with its own set of hyperparameters. We can then define a choice for the classifier and a choice for the hyperparameters of each classifier.

from sklearn.linear_model import RidgeClassifier

hgb = HistGradientBoostingClassifier(
    learning_rate=skrub.choose_float(0.01, 0.9, log=True, name="lr")
)
ridge = RidgeClassifier(alpha=skrub.choose_float(0.01, 100, log=True, name="α"))
classifier = skrub.choose_from({"hgb": hgb, "ridge": ridge}, name="classifier")
pred = X.skb.apply(encoder).skb.apply(classifier, y=y)
print(pred.skb.describe_param_grid())
- encoder: 'minhash'
  N components: choose_int(5, 15, name='N components')
  classifier: 'hgb'
  lr: choose_float(0.01, 0.9, log=True, name='lr')
- encoder: 'minhash'
  N components: choose_int(5, 15, name='N components')
  classifier: 'ridge'
  α: choose_float(0.01, 100, log=True, name='α')
- encoder: 'lse'
  N components: choose_int(5, 15, name='N components')
  classifier: 'hgb'
  lr: choose_float(0.01, 0.9, log=True, name='lr')
- encoder: 'lse'
  N components: choose_int(5, 15, name='N components')
  classifier: 'ridge'
  α: choose_float(0.01, 100, log=True, name='α')
search = pred.skb.get_randomized_search(
    n_iter=16, n_jobs=4, random_state=1, fitted=True
)
search.plot_results()


Now that we have a more complex pipeline, we can draw more conclusions from the parallel coordinate plot. For example, we can see that the HistGradientBoostingClassifier performs better than the RidgeClassifier in most cases, that the StringEncoder outperforms the MinHashEncoder, and that the choice of the additional length feature does not have a significant impact on the score.

Advanced usage#

This section shows some more advanced or less frequently needed use cases.

Choices can depend on each other#

Sometimes not all combinations (cross-product) of hyperparameter values make sense, and instead choices may be linked. For example, our downstream estimator can be a RidgeClassifier or HistGradientBoostingClassifier, and standard scaling should be applied only when it is a Ridge.

Skrub choices have a match method to obtain different results depending on the outcome of the choice.

from sklearn.preprocessing import StandardScaler

X, y = skrub.X(texts), skrub.y(labels)

vectorized_X = X.skb.apply(skrub.MinHashEncoder())

estimator_kind = skrub.choose_from(["ridge", "HGB"], name="estimator kind")

scaling = estimator_kind.match({"ridge": StandardScaler(), "HGB": "passthrough"})
scaled_X = vectorized_X.skb.apply(scaling)

classifier = estimator_kind.match(
    {"ridge": RidgeClassifier(), "HGB": HistGradientBoostingClassifier()}
)
pred = scaled_X.skb.apply(classifier, y=y)
print(pred.skb.describe_param_grid())
- estimator kind: ['ridge', 'HGB']

Here we can see that there is only one parameter: the estimator kind. When it is "ridge", the StandardScaler and the RidgeClassifier are used; when it is "HGB" "passthrough" and the HistGradientBoostingClassifier are used.

Similarly, objects returned by choose_bool have a if_else() method.

Choices can be turned into expressions#

We can turn a choice (or the result of a choice match() or if_else) into an expression, so that we can keep chaining more operations onto it. Here, we create a .choose_bool() object to choose whether to add the length of the text as a feature or not. Then, if_else() will assign the length of the text to a new column length if the choice is True, or do nothing if the choice is False.

X, y = skrub.X(texts), skrub.y(labels)

add_length = skrub.choose_bool(name="add_length")
with_length = add_length.if_else(X.assign(length=X["text"].str.len()), X).as_expr()
vectorized_X = with_length.skb.apply(skrub.MinHashEncoder(n_components=2), cols="text")

# Note: we can manually set the outcome of a choice when evaluating an
# expression (or fitting an estimator)

vectorized_X.skb.eval({"add_length": False})
text_0 text_1
507 -2.135328e+09 -2.092208e+09
818 -2.108546e+09 -2.130021e+09
452 -2.135784e+09 -2.134704e+09
368 -2.135784e+09 -2.143365e+09
242 -2.141841e+09 -2.140976e+09
... ... ...
767 -2.135328e+09 -2.137638e+09
72 -2.126502e+09 -2.134934e+09
908 -2.100929e+09 -2.066336e+09
235 -2.121470e+09 -2.140573e+09
37 -2.127834e+09 -2.143365e+09

1000 rows × 2 columns



vectorized_X.skb.eval({"add_length": True})
text_0 text_1 length
507 -2.135328e+09 -2.092208e+09 87
818 -2.108546e+09 -2.130021e+09 35
452 -2.135784e+09 -2.134704e+09 145
368 -2.135784e+09 -2.143365e+09 324
242 -2.141841e+09 -2.140976e+09 239
... ... ... ...
767 -2.135328e+09 -2.137638e+09 107
72 -2.126502e+09 -2.134934e+09 85
908 -2.100929e+09 -2.066336e+09 44
235 -2.121470e+09 -2.140573e+09 70
37 -2.127834e+09 -2.143365e+09 108

1000 rows × 3 columns



Arbitrary logic depending on a choice#

When match or if_else are not enough and we need to apply arbitrary, eager logic based on a choice we can resort to using skrub.deferred. For example the choice of adding the text length or not could also have been written as:

X, y = skrub.X(texts), skrub.y(labels)


@skrub.deferred
def extract_features(df, add_length):
    if add_length:
        return df.assign(length=df["text"].str.len())
    return df


feat = extract_features(X, skrub.choose_bool(name="add_length")).skb.apply(
    skrub.MinHashEncoder(n_components=2), cols="text"
)

feat.skb.eval({"add_length": False})
text_0 text_1
507 -2.135328e+09 -2.092208e+09
818 -2.108546e+09 -2.130021e+09
452 -2.135784e+09 -2.134704e+09
368 -2.135784e+09 -2.143365e+09
242 -2.141841e+09 -2.140976e+09
... ... ...
767 -2.135328e+09 -2.137638e+09
72 -2.126502e+09 -2.134934e+09
908 -2.100929e+09 -2.066336e+09
235 -2.121470e+09 -2.140573e+09
37 -2.127834e+09 -2.143365e+09

1000 rows × 2 columns



feat.skb.eval({"add_length": True})
text_0 text_1 length
507 -2.135328e+09 -2.092208e+09 87
818 -2.108546e+09 -2.130021e+09 35
452 -2.135784e+09 -2.134704e+09 145
368 -2.135784e+09 -2.143365e+09 324
242 -2.141841e+09 -2.140976e+09 239
... ... ... ...
767 -2.135328e+09 -2.137638e+09 107
72 -2.126502e+09 -2.134934e+09 85
908 -2.100929e+09 -2.066336e+09 44
235 -2.121470e+09 -2.140573e+09 70
37 -2.127834e+09 -2.143365e+09 108

1000 rows × 3 columns



Concluding, we have seen how to use skrub’s choose_from objects to tune hyperparameters, choose optional configurations, add features, and nest choices. We then looked at how the different choices affect the pipeline and the prediction scores.

Thanks to the choose_from objects, Skrub expressions ease the process of hyperparameter tuning.

Total running time of the script: (0 minutes 47.509 seconds)

Gallery generated by Sphinx-Gallery