skrub.Expr.skb.describe_defaults#
- Expr.skb.describe_defaults()[source]#
Describe the hyper-parameters used by the default pipeline.
Returns a dict mapping choice names to a simplified representation of the corresponding value in the default pipeline.
Examples
>>> import skrub >>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.ensemble import RandomForestClassifier
>>> X, y = skrub.X(), skrub.y() >>> selector = SelectKBest(k=skrub.choose_int(4, 20, log=True, name='k')) >>> logistic = LogisticRegression( ... C=skrub.choose_float(0.1, 10.0, log=True, name="C"), ... ) >>> rf = RandomForestClassifier( ... n_estimators=skrub.choose_int(3, 30, log=True, name="N 🌴"), ... random_state=0, ... ) >>> classifier = skrub.choose_from( ... {"logistic": logistic, "rf": rf}, name="classifier" ... ) >>> pred = X.skb.apply(selector, y=y).skb.apply(classifier, y=y) >>> print(pred.skb.describe_defaults()) {'k': 9, 'classifier': 'logistic', 'C': 1.000...}