skrub.Expr.skb.iter_pipelines_randomized#
- Expr.skb.iter_pipelines_randomized(n_iter, *, random_state=None)[source]#
Get pipelines with different parameter combinations.
This generator yields a
SkrubPipeline
parametrized for each possible combination of choices.The choice outcomes used in each pipeline can be inspected with
SkrubPipeline.describe_params()
.See also
Expr.skb.iter_pipelines_grid
Similar function but for exploring all the possible parameter combinations. Cannot be used when the expression contains some numeric ranges built with
choose_float()
orchoose_int()
withn_steps=None
.Expr.skb.get_grid_search
Pipeline with built-in exhaustive exploration of the parameter grid to select the best one.
Expr.skb.get_randomized_search
Pipeline with built-in randomized exploration of the parameter grid to select the best one.
Examples
>>> import numpy as np >>> from sklearn import preprocessing >>> import skrub
>>> scaler = skrub.choose_from( ... [ ... preprocessing.MinMaxScaler(), ... preprocessing.StandardScaler(), ... preprocessing.RobustScaler(), ... preprocessing.MaxAbsScaler(), ... ], ... name="scaler", ... ) >>> out = skrub.X().skb.apply(scaler)
>>> X = np.asarray([-4.0, 3.0, 10.0])[:, None]
>>> for p in out.skb.iter_pipelines_randomized(n_iter=2, random_state=0): ... print("======================================") ... print("params:", p.describe_params()) ... print("result:") ... print(p.fit_transform({"X": X})) ====================================== params: {'scaler': 'RobustScaler()'} result: [[-1.] [ 0.] [ 1.]] ====================================== params: {'scaler': 'MaxAbsScaler()'} result: [[-0.4] [ 0.3] [ 1. ]]