Skrub Selectors: helpers for selecting columns in a dataframe#

In skrub, a selector represents a column selection rule, such as “all columns that have numeric data types, except the column 'User ID'”.

Selectors have two main benefits:

  • Expressing complex selection rules in a simple and concise way by combining selectors with operators. A range of useful selectors is provided by this module.

  • Delayed selection: passing a selection rule which will evaluated later on a dataframe that is not yet available. For example, without selectors, it is not possible to instantiate a SelectCols that selects all columns except those with the suffix ‘ID’ if the data on which it will be fitted is not yet available.

Here is an example dataframe. Note that selectors support both Pandas and Polars dataframes:

>>> import pandas as pd
>>> df = pd.DataFrame(
...     {
...         "height_mm": [297.0, 420.0],
...         "width_mm": [210.0, 297.0],
...         "kind": ["A4", "A3"],
...         "ID": [4, 3],
...     }
... )

cols() is a simple kind of selector which selects a fixed list of column names:

>>> from skrub import selectors as s
>>> mm_cols = s.cols('height_mm', 'width_mm')
>>> mm_cols
cols('height_mm', 'width_mm')

This selector can then be passed to a select() function:

>>> s.select(df, mm_cols)
   height_mm  width_mm
0      297.0     210.0
1      420.0     297.0

It can also be passed to SelectCols or DropCols to be embedded in scikit-learn pipelines:

Last but not least, selectors can be passed to skrub DataOps when applying an estimator with the skrub.DataOp.skb.apply() function:

>>> import skrub
>>> from sklearn.preprocessing import StandardScaler
>>> skrub.X(df).skb.apply(StandardScaler(), cols=mm_cols)
<Apply StandardScaler>
Result:
―――――――
  kind  ID  height_mm  width_mm
0   A4   4       -1.0      -1.0
1   A3   3        1.0       1.0

Selectors can be used within the skrub.SelectCols class, implementing fit and transform, as demoed below:

>>> from skrub import SelectCols

Type of selectors#

all() is another simple selector, especially useful for default arguments since it keeps all columns:

>>> SelectCols(cols=s.all()).fit_transform(df)
   height_mm  width_mm kind  ID
0      297.0     210.0   A4   4
1      420.0     297.0   A3   3

Selectors can be combined with operators, for example if we wanted all columns except the “mm” columns above:

>>> SelectCols(s.all() - s.cols("height_mm", "width_mm")).fit_transform(df)
  kind  ID
0   A4   4
1   A3   3

This module provides several kinds of selectors, which allow to select columns by name, data type, contents, or according to arbitrary user-provided rules.

>>> SelectCols(s.numeric()).fit_transform(df)
   height_mm  width_mm  ID
0      297.0     210.0   4
1      420.0     297.0   3
>>> SelectCols(s.glob('*_mm')).fit_transform(df)
   height_mm  width_mm
0      297.0     210.0
1      420.0     297.0

See Selectors for an exhaustive list.

The available operators are |, &, -, ^ with the meaning of usual python sets, and ~ to invert a selection.

>>> SelectCols(s.glob('*_mm')).fit_transform(df)
   height_mm  width_mm
0      297.0     210.0
1      420.0     297.0
>>> SelectCols(~s.glob('*_mm')).fit_transform(df)
  kind  ID
0   A4   4
1   A3   3
>>> SelectCols(s.glob('*_mm') | s.cols('ID')).fit_transform(df)
   height_mm  width_mm  ID
0      297.0     210.0   4
1      420.0     297.0   3
>>> SelectCols(s.glob('*_mm') & s.glob('height_*')).fit_transform(df)
   height_mm
0      297.0
1      420.0
>>> SelectCols(s.glob('*_mm') ^ s.string()).fit_transform(df)
   height_mm  width_mm kind
0      297.0     210.0   A4
1      420.0     297.0   A3

The operators respect the usual short-circuit rules. For example, the following selector won’t compute the cardinality of non-categorical columns:

>>> s.categorical() & s.cardinality_below(10)
(categorical() & cardinality_below(10))