fraud_flag | |
---|---|
0 | 0 |
1 | 0 |
2 | 0 |
3 | 0 |
4 | 0 |
61236 | 0 |
61237 | 0 |
61238 | 0 |
61239 | 0 |
61240 | 0 |
fraud_flag
Int64DType- Null values
- 0 (0.0%)
- Unique values
- 2 (< 0.1%)
- Mean ± Std
- 0.00234 ± 0.0483
- Median ± IQR
- 0 ± 0
- Min | Max
- 0 | 1
File "/home/circleci/project/doc/conf.py", line 586, in <module>
create_expression_report()
File "/home/circleci/project/doc/expression_report.py", line 51, in create_expression_report
predictions = baskets.skb.apply(hgb, y=fraud_flags)
HistGradientBoostingClassifier(learning_rate=np.float64(0.09486832980505142))In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
loss | 'log_loss' | |
learning_rate | np.float64(0....6832980505142) | |
max_iter | 100 | |
max_leaf_nodes | 31 | |
max_depth | None | |
min_samples_leaf | 20 | |
l2_regularization | 0.0 | |
max_features | 1.0 | |
max_bins | 255 | |
categorical_features | 'from_dtype' | |
monotonic_cst | None | |
interaction_cst | None | |
warm_start | False | |
early_stopping | 'auto' | |
scoring | 'loss' | |
validation_fraction | 0.1 | |
n_iter_no_change | 10 | |
tol | 1e-07 | |
verbose | 0 | |
random_state | None | |
class_weight | None |
fraud_flag | |
---|---|
0 | 0 |
1 | 0 |
2 | 0 |
3 | 0 |
4 | 0 |
61236 | 0 |
61237 | 0 |
61238 | 0 |
61239 | 0 |
61240 | 0 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Column | Column name | dtype | Null values | Unique values | Mean | Std | Min | Median | Max |
---|---|---|---|---|---|---|---|---|---|
0 | fraud_flag | Int64DType | 0 (0.0%) | 2 (< 0.1%) | 0.00234 | 0.0483 | 0 | 0 | 1 |
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").